(2012•遵義)如圖,平行四邊形ABCD的頂點(diǎn)A、C在雙曲線y1=-
k1
x
上,B、D在雙曲線y2=
k2
x
上,k1=2k2(k1>0),AB∥y軸,S?ABCD=24,則k1=
8
8
分析:利用平行四邊形的性質(zhì)設(shè)A(x,y1)、B(x、y2),根據(jù)反比例函數(shù)的圖象關(guān)于原點(diǎn)對稱的性可知C(-x,-y1)、D(-x、-y2);然后由反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,將點(diǎn)A、B的坐標(biāo)分別代入它們所在的函數(shù)圖象的解析式,求得y1=-2y2;最后根據(jù)S?ABCD=
AB+CD
2
•|2x|=24可以求得k2=y2x=4.
解答:解:在?ABCD中,AB∥CD,AB=CD(平行四邊形的對應(yīng)邊平行且相等),故設(shè)A(x,y1)、B(x、y2),則根據(jù)反比例函數(shù)的圖象關(guān)于原點(diǎn)對稱的性質(zhì)知,C(-x,-y1)、D(-x、-y2).
∵A在雙曲線y1=-
k1
x
上,B在雙曲線y2=
k2
x
上,
∴x=-
k1
y1
,x=
k2
y2
,
∴-
k1
y1
=
k2
y2
;
又∵k1=2k2(k1>0),
∴y1=-2y2
∵S?ABCD=24,
AB+CD
2
•|2x|=6|y2x|=24,
解得,y2x=±4,
∵雙曲線y2=
k2
x
位于第一、三象限,
∴k2=4,
∴k1=2k2=8
故答案是:8.
點(diǎn)評:本題考查了反比例函數(shù)綜合題.根據(jù)反比例函數(shù)的圖象關(guān)于原點(diǎn)對稱的性質(zhì)求得點(diǎn)A與點(diǎn)B的縱坐標(biāo)的數(shù)量關(guān)系是解答此題的難點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•遵義)如圖,4張背面完全相同的紙牌(用①、②、③、④表示),在紙牌的正面分別寫有四個不同的條件,小明將這4張紙牌背面朝上洗勻后,先隨機(jī)摸出一張(不放回),再隨機(jī)摸出一張.
(1)用樹狀圖(或列表法)表示兩次摸牌出現(xiàn)的所有可能結(jié)果;
(2)以兩次摸出牌上的結(jié)果為條件,求能判斷四邊形ABCD是平行四邊形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•遵義)如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點(diǎn),由A向C運(yùn)動(與A、C不重合),Q是CB延長線上一點(diǎn),與點(diǎn)P同時以相同的速度由B向CB延長線方向運(yùn)動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當(dāng)∠BQD=30°時,求AP的長;
(2)當(dāng)運(yùn)動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•遵義)如圖,AB是⊙O的弦,AB長為8,P是⊙O上一個動點(diǎn)(不與A、B重合),過點(diǎn)O作OC⊥AP于點(diǎn)C,OD⊥PB于點(diǎn)D,則CD的長為
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•遵義)如圖,△OAC中,以O(shè)為圓心,OA為半徑作⊙O,作OB⊥OC交⊙O于B,垂足為O,連接AB交OC于點(diǎn)D,∠CAD=∠CDA.
(1)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若OA=5,OD=1,求線段AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•遵義)如圖,已知拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過原點(diǎn)O,交x軸于點(diǎn)A,其頂點(diǎn)B的坐標(biāo)為(3,-
3
).
(1)求拋物線的函數(shù)解析式及點(diǎn)A的坐標(biāo);
(2)在拋物線上求點(diǎn)P,使S△POA=2S△AOB;
(3)在拋物線上是否存在點(diǎn)Q,使△AQO與△AOB相似?如果存在,請求出Q點(diǎn)的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案