【題目】如圖,CE是△ABC的外角∠ACD的平分線,若∠B=25°,∠ACE=60°,則∠A=(
A.105°
B.95°
C.85°
D.25°

【答案】B
【解析】解:∵CE是△ABC的外角∠ACD的平分線,∠ACE=60°, ∴∠ACD=2∠ACE=120°.
∵∠B=25°,
∴∠A=120°﹣25°=95°.
故選B.
【考點精析】根據(jù)題目的已知條件,利用三角形的內(nèi)角和外角和三角形的外角的相關(guān)知識可以得到問題的答案,需要掌握三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了綠化環(huán)境育英中學(xué)八年級三班同學(xué)都積極參加植樹活動,今年植樹節(jié)時,該班同學(xué)植樹情況的部分數(shù)據(jù)如圖所示,請根據(jù)統(tǒng)計圖信息回答下列問題

1)八年級三班共有多少名同學(xué)?

2)條形統(tǒng)計圖中m=   ,n=   

3)扇形統(tǒng)計圖中,試計算植樹2棵的人數(shù)所對應(yīng)的扇形圓心角的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次籃球聯(lián)賽初賽階段,每隊場比賽,每場比賽都要分出勝負,每隊勝一場分, 負一場得分,積分超過分才能獲得參賽資格.

(1)已知甲隊在初賽階段的積分為分,甲隊初賽階段勝、負各多少場;

(2)如果乙隊要獲得參加決賽資格,那么乙隊在初賽階段至少要勝多少場?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點,連接CE并延長交AD于F.

(1)求證:△AEF≌△BEC;

(2)判斷四邊形BCFD是何特殊四邊形,并說出理由;

(3)如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,若BC=1,求AH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中 ,∠A=∠B,D、E是邊AB上的點,DG∥AC,EF∥BC,DG、EF相 交于點H.

(1)∠HDE與∠HED是否相等?并說明理由.

解:∠HDE=∠HED.理由如下:

∵DGAC(已知)

                 

EFBC (已知)

            

又∵∠A=∠B (已知)

.

(2)如果∠C=90°,DG、 EF有何位置關(guān)系?并仿照 (1)中的解答方法說明理由.

解:        .理由如下:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標(biāo)系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果m是從﹣1,0,1,2四個數(shù)中任取的一個數(shù),n是從﹣2,0,3三個數(shù)中任取的一個數(shù),則二次函數(shù)y=(x﹣m)2+n的頂點在坐標(biāo)軸上的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線y=ax2+bx+c(a≠0)經(jīng)過原點,頂點為A(s,t)(s≠0).
(1)當(dāng)s=2時,t=1時,求拋物線對應(yīng)的二次函數(shù)的表達式;
(2)若(1)中的拋物線與x軸交于點B,過B作OA的平行線交拋物線于點D,求△BDO三條高的和;
(3)當(dāng)點A在拋物線y=x2﹣x上,且﹣1≤s<2時,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE把∠BOD分成兩部分.

(1)圖中∠AOC的對頂角為________,BOE的補角為________

(2)若∠AOC75°,且∠BOE∶∠EOD14,求∠AOE的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案