【題目】如圖,方格紙中的每個(gè)小正方形的邊長(zhǎng)都為1,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上.

1)以點(diǎn)A為旋轉(zhuǎn)中心,將ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AB1C1,畫出AB1C1

2)畫出ABC關(guān)于原點(diǎn)O成中心對(duì)稱的A2B2C2,若點(diǎn)C的坐標(biāo)為(﹣4,﹣1),則點(diǎn)C2的坐標(biāo)為   

【答案】(1)見(jiàn)解析,(2)圖見(jiàn)解析;(4,1

【解析】

1)讓三角形的各頂點(diǎn)都繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到對(duì)應(yīng)點(diǎn),順次連接即可;

2)根據(jù)ABC的各頂點(diǎn)關(guān)于原點(diǎn)的中心對(duì)稱,得出A2、B2C2的坐標(biāo),連接各點(diǎn),即可得到結(jié)論.

解:(1)所畫圖形如下所示,A1B1C1即為所求;

2)所畫圖形如下所示,AB2C2即為所求.

點(diǎn)C2的坐標(biāo)為(4,1),

故答案為:(4,1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一段拋物線y=﹣x2+4(﹣2≤x≤2)為C1,與x軸交于A0,A1兩點(diǎn),頂點(diǎn)為D1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得到C2,頂點(diǎn)為D2;C1C2組成一個(gè)新的圖象,垂直于y軸的直線l與新圖象交于點(diǎn)P1x1y1),P2x2,y2),與線段D1D2交于點(diǎn)P3x3,y3),設(shè)x1,x2x3均為正數(shù),tx1+x2+x3,則t的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB=,EAD邊上的一點(diǎn)(點(diǎn)E與點(diǎn)A和點(diǎn)D不重合)BE的垂直平分線交AB于點(diǎn)M,交DC于點(diǎn)N.

(1)證明:MN = BE.

(2)設(shè)AE=,四邊形ADNM的面積為S,寫出S關(guān)于的函數(shù)關(guān)系式.

(3)當(dāng)AE為何值時(shí),四邊形ADNM的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=10°,點(diǎn)POB上.以點(diǎn)P為圓心,OP為半徑畫弧,交OA于點(diǎn)P1(點(diǎn)P1與點(diǎn)O不重合),連接PP1;再以點(diǎn)P1為圓心,OP為半徑畫弧,交OB于點(diǎn)P2(點(diǎn)P2與點(diǎn)P不重合),連接P1 P2;再以點(diǎn)P2為圓心,OP為半徑畫弧,交OA于點(diǎn)P3(點(diǎn)P3與點(diǎn)P1不重合),連接P2 P3;……

請(qǐng)按照上面的要求繼續(xù)操作并探究:

P3 P2 P4=_____°;按照上面的要求一直畫下去,得到點(diǎn)Pn,若之后就不能再畫出符合要求點(diǎn)Pn+1了,則n=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為2,將射線AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α,所得射線與線段BD交于點(diǎn)M,作CEAM于點(diǎn)E,點(diǎn)N與點(diǎn)M關(guān)于直線CE對(duì)稱,連接CN

(1)如圖,當(dāng)0°<α<45°時(shí):

①依題意補(bǔ)全圖;

②用等式表示∠NCE與∠BAM之間的數(shù)量關(guān)系:___________;

(2)當(dāng)45°<α<90°時(shí),探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明;

(3)當(dāng)0°<α<90°時(shí),若邊AD的中點(diǎn)為F,直接寫出線段EF長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為8的正方形紙片ABCD沿著EF折疊,使點(diǎn)C落在AB邊的中點(diǎn)M處.點(diǎn)D落在點(diǎn)D'處,MD'AD交于點(diǎn)G,則△AMG的內(nèi)切圓半徑的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)Ax1,y1)、Bx2y2)在二次函數(shù)yx2mxn的圖像上,當(dāng)x11x23時(shí),y1y2

1)若Pa,b1),Q3b2)是函數(shù)圖象上的兩點(diǎn),b1b2,則實(shí)數(shù)a的取值范圍是(

Aa1 Ba3 Ca1a3 D1a3

2)若拋物線與x軸只有一個(gè)公共點(diǎn),求二次函數(shù)的表達(dá)式.

3)若對(duì)于任意實(shí)數(shù)x1、x2都有y1y2≥2,則n的范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè)第一期培植盆景與花卉各50盆售后統(tǒng)計(jì),盆景的平均每盆利潤(rùn)是160花卉的平均每盆利潤(rùn)是19,調(diào)研發(fā)現(xiàn):

①盆景每增加1,盆景的平均每盆利潤(rùn)減少2;每減少1,盆景的平均每盆利潤(rùn)增加2;②花卉的平均每盆利潤(rùn)始終不變.

小明計(jì)劃第二期培植盆景與花卉共100設(shè)培植的盆景比第一期增加x,第二期盆景與花卉售完后的利潤(rùn)分別為W1,W2(單位元)

(1)用含x的代數(shù)式分別表示W1,W2;

(2)當(dāng)x取何值時(shí)第二期培植的盆景與花卉售完后獲得的總利潤(rùn)W最大,最大總利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線軸交于點(diǎn)、,頂點(diǎn)為M

1)求拋物線的解析式和點(diǎn)M的坐標(biāo);

2)點(diǎn)E是拋物線段BC上的一個(gè)動(dòng)點(diǎn),設(shè)的面積為S,求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);

3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得以A、P、C為頂點(diǎn)的三角形是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案