【題目】 今年五一假期,某教學(xué)活動小組組織一次登山活動,他們從山腳下A點出發(fā)沿斜坡AB到達B點,再從B點沿斜坡BC到達山頂C點,路線如圖所示,斜坡AB的長為200米,斜坡BC的長為200米,坡度是11,已知A點海拔121米,C點海拔721

1)求B點的海拔;

2)求斜坡AB的坡度;

3)為了方便上下山,若在AC之間架設(shè)一條鋼纜,求鋼纜AC的長度.

【答案】1521米;(223;(31000米.

【解析】

1)根據(jù)題意和圖形,可以求得點B的海拔;

2)根據(jù)題目中的數(shù)據(jù)可以求得AFBF的長度,從而可以求得斜坡AB的坡度;

3)根據(jù)題目中的數(shù)據(jù)可以求得ADCD的長度,然后根據(jù)勾股定理即可求得AC的長.

1)如圖,作CDAM于點D,作BECD于點E,作BFAM于點F,連接AC

∵斜坡BC的長為200米,坡度是11,

BE=CE=200米,

A點海拔121米,C點海拔721米,

CD=600米,

BF=400米,

121+400=521(),

∴點B的海拔是521米;

2)∵斜坡AB的長為200米,BF=400米,

AF==600米,

BFAF=400600=23,

即斜坡AB的坡度是23;

3)∵CD=600米,AD=AF+FD=AF+BE=600+200=800(),

AC==1000米,

即鋼纜AC的長度是1000米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,以CB為半徑作⊙C,交AC于點D,交AC的延長線于點E,連接ED,BE.

(1)求證:△ABD∽△AEB;

(2)當 = 時,求tanE;

(3)在(2)的條件下,作∠BAC的平分線,與BE交于點F,若AF=2,求⊙C的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)7,2,5,4,2的方差為a,若再增加一個數(shù)據(jù)4,這6個數(shù)據(jù)的方差為b,則ab的大小關(guān)系是(  )

A. a>b B. a=b C. a<b D. 以上都有可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCD為矩形,以CD為直徑作半圓,矩形的另外三邊分別與半圓相切,沿著折痕DF折疊該矩形,使得點C的對應(yīng)點E落在AB邊上,若AD2,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副三角板如圖1所置,其中AC邊與等腰RtEBD斜邊上的中線EC共線,以C點為旋轉(zhuǎn)中心,順時針轉(zhuǎn)動△ACB,B、A兩點分別于GF兩點對應(yīng),CGBE邊于點M,CFDE邊于N,已知旋轉(zhuǎn)角為α,BC2

(問題發(fā)現(xiàn))(1)如圖2所示,若旋轉(zhuǎn)角α0°<α30°)時,猜想CMCN的數(shù)量關(guān)系,并寫出你的推斷過程;

(類比探究)(2)如圖3所示,若旋轉(zhuǎn)角α75°時,(1)中的結(jié)論是否還成立?   ,此時連接MN,請直接寫出MN的長度為   ;

(拓展延伸)(3)在圖3的基礎(chǔ)上將△GCF向左平移至△GHF的位置,若DHkBH,猜想線段HNHM的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一座拋物線形拱橋,正常水位橋下面寬度為米,拱頂距離水平面米,如圖建立直角坐標系,若正常水位時,橋下水深米,為保證過往船只順利航行,橋下水面寬度不得小于米,則當水深超過多少米時,就會影響過往船只的順利航行(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC在坐標平面內(nèi),三個頂點的坐標分別為A0,3),B3,4),C2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度).

1)作出ABC繞點A順時針方向旋轉(zhuǎn)90°后得到的A1B1C1,并直接寫出C1點的坐標;

2)作出ABC關(guān)于原點O成中心對稱的A2B2C2,并直接寫出B2的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、C分別是一次函數(shù)y=﹣x+3的圖象與y軸、x軸的交點,點B與點C關(guān)于原點對稱,二次函數(shù)yx2+bx+c的圖象經(jīng)過點B,且該二次函數(shù)圖象上存在一點D,使四邊形ABCD能構(gòu)成平行四邊形.

1)求二次函數(shù)的表達式;

2)動點P從點A到點D,同時動點Q從點C到點A都以每秒1個單位的速度運動,設(shè)運動時間為t秒.

①當t為何值時,有PQAC?

②當t為何值時,四邊形PDCQ的面積最?此時四邊形PDCQ的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)的圖像與直線交于點,直線分別交x軸,y軸于CB兩點.

1)求的值;

2)已知點,當點P在函數(shù)的圖像上時,求POA的面積;

3)點Q在函數(shù)的圖像上滑動,現(xiàn)有以Q點為圓心,為半徑的⊙Q,當⊙Q與直線相切時,求點Q的坐標.

查看答案和解析>>

同步練習(xí)冊答案