已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A、C兩點(diǎn)的坐標(biāo)分別為A(4,2),C(n,-2)(其中n>0),點(diǎn)B在x軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點(diǎn)C移動(dòng),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P移動(dòng)的路徑的長(zhǎng)為l,△POC的面積為S,S與l的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

(1)結(jié)合以上信息及圖2填空:圖2中的m=
2
5
2
5
;
(2)求B、C兩點(diǎn)的坐標(biāo)及圖2中OF的長(zhǎng).
分析:(1)利用當(dāng)P點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),△POC的面積為12,求出斜邊AO即可;
(2)圖1中四邊形ODEF是等腰梯形,點(diǎn)D的坐標(biāo)為D(m,8),得出yE=yD=8,此時(shí)圖2中點(diǎn)P運(yùn)動(dòng)到與點(diǎn)B重合,根據(jù)點(diǎn)P在AB上運(yùn)動(dòng)時(shí)△POC的面積不變,可得AB與OC平行,求出直線AB的解析式,可得出直線OC的解析式,再由點(diǎn)C縱坐標(biāo)為-2,可確定點(diǎn)C的坐標(biāo),繼而求出OF的長(zhǎng)度.
解答:解:(1)根據(jù)圖形可得:當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)A時(shí),△POC的面積為8,
∵OA=
42+22
=2
5
,
∴P移動(dòng)的路徑的長(zhǎng)l=2
5

∴m的值為2
5

(2)∵圖1中四邊形ODEF是等腰梯形,點(diǎn)D的坐標(biāo)為D(m,8),
∴yE=yD=8,此時(shí)圖2中點(diǎn)O運(yùn)動(dòng)到與點(diǎn)B重合,
∵點(diǎn)B在x軸上,
∴S△POC=
1
2
OB×2=8,
解得:OB=8,
即點(diǎn)B的坐標(biāo)為(8,0),
∵點(diǎn)P在AB上運(yùn)動(dòng)時(shí),△POC的面積不變,
∴可得OC∥AB,
設(shè)直線AB的解析式為y=kx+b,
將A、B的坐標(biāo)代入可得:
2k+b=3
8k+b=0
,
解得:
k=-
1
2
b=4
,
∴直線AB的解析式為y=-
1
2
x+4,
∴直線OC的解析式為y=-
1
2
x,
∵點(diǎn)C的縱坐標(biāo)為-2,
∴點(diǎn)C的橫坐標(biāo)為4,
∴點(diǎn)C的坐標(biāo)為(4,-2),
∴OF=l=OA+AB+BC=2
5
+2
5
+2
5
=6
5
點(diǎn)評(píng):本題考查了動(dòng)點(diǎn)問題的函數(shù)圖象,涉及了等腰梯形的性質(zhì)、平行線的性質(zhì)及一次函數(shù)的知識(shí),綜合性較強(qiáng),解答本題關(guān)鍵是將兩圖中的點(diǎn)對(duì)應(yīng)起來,此題難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:在如圖1所示的銳角三角形ABC中,CH⊥AB于點(diǎn)H,點(diǎn)B關(guān)于直線CH的對(duì)稱點(diǎn)為D,AC邊上一點(diǎn)E滿足∠EDA=∠A,直線DE交直線CH于點(diǎn)F.
(1)求證:BF∥AC;
(2)若AC邊的中點(diǎn)為M,求證:DF=2EM;
(3)當(dāng)AB=BC時(shí)(如圖2),在未添加輔助線和其它字母的條件下,找出圖2中所有與BE相等的線段,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•徐州模擬)已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A、C兩點(diǎn)的坐標(biāo)分別為A(4,2),C(n,-2)(其中n>0),點(diǎn)B在x軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點(diǎn)C移動(dòng),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P移動(dòng)的路徑的長(zhǎng)為l,△POC的面積為S,S與l的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.
(1)結(jié)合以上信息及圖2填空:圖2中的m=
2
5
2
5
;
(2)求B、C兩點(diǎn)的坐標(biāo)及圖2中OF的長(zhǎng);
(3)若OM是∠AOB的角平分線,且點(diǎn)G與點(diǎn)H分別是線段AO與射線OM上的兩個(gè)動(dòng)點(diǎn),直接寫出HG+AH的最小值,請(qǐng)?jiān)趫D3中畫出示意圖并簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A,C兩點(diǎn)的坐標(biāo)分別為A(2,3),C(n,-3)(其中n>0),點(diǎn)B在x軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點(diǎn)C移動(dòng),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P移動(dòng)的路徑的長(zhǎng)為x,△POC的面積為S,S與x的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.
(1)求B,C兩點(diǎn)的坐標(biāo)及圖2中OF的長(zhǎng);
(2)在圖1中,當(dāng)動(dòng)點(diǎn)P恰為經(jīng)過O,B兩點(diǎn)的拋物線W的頂點(diǎn)時(shí),
①求此拋物線W的解析式;
②若點(diǎn)Q在直線y=-1上方的拋物線W上,坐標(biāo)平面內(nèi)另有一點(diǎn)R,滿足以B,P,Q,R四點(diǎn)為頂點(diǎn)的四邊形是菱形,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A,C兩點(diǎn)的坐標(biāo)分別為A(2,3),C(n,-3)(其中n>0),點(diǎn)B在x軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點(diǎn)C移動(dòng),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P移動(dòng)的路徑的長(zhǎng)為l,△POC的面積為S,S與l的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

(1)結(jié)合以上信息及圖2填空:圖2中的m=
13
13

(2)求B,C兩點(diǎn)的坐標(biāo)及圖2中OF的長(zhǎng);
(3)在圖1中,當(dāng)動(dòng)點(diǎn)P恰為經(jīng)過O,B兩點(diǎn)的拋物線W的頂點(diǎn)時(shí),
①求此拋物線W的解析式;
②若點(diǎn)Q在直線y=-1上方的拋物線W上,坐標(biāo)平面內(nèi)另有一點(diǎn)R,滿足以B,P,Q,R四點(diǎn)為頂點(diǎn)的四邊形是菱形,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案