【題目】如圖,ABCD的周長為16cm,AC、BD相交于點O,OE⊥AC交AD于E,則△DCE的周長為cm.
【答案】8
【解析】解:∵平行四邊形ABCD, ∴AD=BC,AB=CD,OA=OC,
∵EO⊥AC,
∴AE=EC,
∵AB+BC+CD+AD=16,
∴AD+DC=8,
∴△DCE的周長是:CD+DE+CE=AE+DE+CD=AD+CD=8,
所以答案是:8.
【考點精析】根據(jù)題目的已知條件,利用線段垂直平分線的性質(zhì)和平行四邊形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的邊長為6,點A、C分別在x軸,y軸的正半軸上,點D(2,0)在OA上,P是OB上一動點,則PA+PD的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A的坐標(biāo)是(﹣2,0),點B的坐標(biāo)是(6,0),點C在第一象限內(nèi)且△OBC為等邊三角形,直線BC交y軸于點D,過點A作直線AE⊥BD,垂足為E,交OC于點F.
(1)求直線BD的函數(shù)表達(dá)式;
(2)求線段OF的長;
(3)連接BF,OE,試判斷線段BF和OE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程(或方程組)解應(yīng)用題:
(1)某服裝店到廠家選購甲、乙兩種服裝,若購進(jìn)甲種服裝9件、乙種服裝10件,需1810元;購進(jìn)甲種服裝11件乙種服裝8件,需1790元,求甲乙兩種服裝每件價格相差多少元?
(2)某工廠現(xiàn)庫存某種原料1200噸,用來生產(chǎn)A、B兩種產(chǎn)品,每生產(chǎn)1噸A產(chǎn)品需這種原料2噸、生產(chǎn)費用1000元;每生產(chǎn)1噸B產(chǎn)品需這種原料2.5噸、生產(chǎn)費用900元,如果用來生產(chǎn)這兩種產(chǎn)品的資金為53萬元,那么A、B兩種產(chǎn)品各生產(chǎn)多少噸才能使庫存原料和資金恰好用完?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將二次函數(shù)y=(x﹣2)2+2的圖象向左平移2個單位,所得圖象對應(yīng)的函數(shù)解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,OC是∠AOD的平分線,OE是∠BOD的平分線.
(1)若∠AOB=120°,則∠COE是多少度?
(2)若∠EOC=65°,∠DOC=25°,則∠BOE是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題是( ) .
A. 對角線相等的四邊形是矩形;
B. 對角線互相垂直的四邊形是菱形;
C. 對角線互相平分的四邊形是平行四邊形;
D. 對角線互相垂直平分的四邊形是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com