【題目】如圖,AB﹣BC﹣CD是一根三節(jié)棍,其中線段AB、BC、CD首尾順次相連,且AB=BC=CD,將這個(gè)三節(jié)棍擺放在△AMD中,使它的兩個(gè)端點(diǎn)與△AMD兩個(gè)頂點(diǎn)重合,三節(jié)棍的首尾兩節(jié)在△AMD的邊上,則AB﹣BC﹣CD就是△AMD的配套三節(jié)棍.

(1)若∠A=60°,AD=60,求△AMD的配套三節(jié)棍的總長(zhǎng);

(2)AM=AD,AMD的配套三節(jié)棍AB﹣BC﹣CD中一邊BC平行于MD,利用直尺圓規(guī)畫出圖形,并求出∠A的度數(shù).(保留作圖痕跡)

【答案】(1)90;(2)作圖見(jiàn)解析;∠A=60°.

【解析】

(1)根據(jù)已知條件即可得到結(jié)論;

(2)根據(jù)等腰三角形的性質(zhì)得到∠M=D,A=BCA,由平行線的性質(zhì)得到∠BCA=D,等量代換得到∠A=D=M,于是得到結(jié)論.

(1)∵∠A=60°,AB=BC,AB=BC=CA,

AD=60,

AB=BC=CA=CD=30,

∴△AMD的配套三節(jié)棍的總長(zhǎng)為3×30=90;

(2)①作射線AE,在射線AE上截取AB=BM,

②分別以A,M為圓心,AM的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)D,

③連接AD,MD,

④過(guò)BBCDMADD,

則圖形即為所求;

證明:∵AM=AD,

∴∠M=D,

AB=BC,

∴∠A=BCA,

BCMD,

∴∠BCA=D,

∴∠A=D=M,

∵∠A+D+M=180°,

∴∠A=60°,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,DBC邊上一點(diǎn),EAC邊上一點(diǎn),且∠ADE=60°.

(1)求證:△ABD∽△DCE;

(2)若BD=3,CE=2,求△ABC的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“校園手機(jī)”現(xiàn)象越來(lái)越受到社會(huì)的關(guān)注.“寒假”期間,某校小記者隨機(jī)調(diào)查了某地區(qū)若干名學(xué)生和家長(zhǎng)對(duì)中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:

(1)求這次調(diào)查的家長(zhǎng)人數(shù),并補(bǔ)全圖1;

(2)求圖2中表示家長(zhǎng)“贊成”的圓心角的度數(shù);

(3)已知某地區(qū)共6500名家長(zhǎng),估計(jì)其中反對(duì)中學(xué)生帶手機(jī)的大約有多少名家長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形,∠DAB=DCB,對(duì)角線,交于點(diǎn).分別添加下列條件之一:①;②;③;④∠ABC=ADC,能使四邊形成為平行四邊形,則正確的選項(xiàng)有_____.(填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一面積為5的等腰三角形,它的一個(gè)內(nèi)角是30°,則以它的腰長(zhǎng)為邊的正方形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 為更新果樹品種,某果園計(jì)劃新購(gòu)進(jìn)A、B兩個(gè)品種的果樹苗栽植培育,若計(jì)劃購(gòu)進(jìn)這兩種果樹苗共45棵,其中A種苗的單價(jià)為7元/棵,購(gòu)買B種苗所需費(fèi)用y(元)與購(gòu)買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.

1)求yx的函數(shù)關(guān)系式;

2)若在購(gòu)買計(jì)劃中,B種苗的數(shù)量不超過(guò)35棵,但不少于A種苗的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)購(gòu)買方案,使總費(fèi)用最低,并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:對(duì)于給定的一次函數(shù)y=ax+ba0),把形如的函數(shù)稱為一次函數(shù)y=ax+ba0)的衍生函數(shù).已知矩形ABCD的頂點(diǎn)坐標(biāo)分別為A1,0),B1,2),C(-3,2),D(-30).

1)已知函數(shù)y=2x+l.

①若點(diǎn)P(-1,m)在這個(gè)一次函數(shù)的衍生函數(shù)圖像上,則m= .

②這個(gè)一次函數(shù)的衍生函數(shù)圖像與矩形ABCD的邊的交點(diǎn)坐標(biāo)分別為 .

2)當(dāng)函數(shù)y=kx-3k>0)的衍生函數(shù)的圖象與矩形ABCD2個(gè)交點(diǎn)時(shí),k的取值范圍是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=AC,點(diǎn)E,F(xiàn)在邊BC上,BE=CF,點(diǎn)DAF的延長(zhǎng)線上,AD=AC.

(1)求證:ABE≌△ACF;

(2)若∠BAE=30°,則∠ADC=   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知點(diǎn)與點(diǎn),,是一平行四邊形的四個(gè)頂點(diǎn),則長(zhǎng)的最小值為( )

A.4B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案