分析 (1)根據(jù)等腰直角三角形的性質(zhì)得到AB=BE,根據(jù)鄰補角的定義得到∠ABE=∠DBE=90°,根據(jù)全等三角形的判定定理即可得到結(jié)論;
(2)根據(jù)全等三角形的性質(zhì)得到∠BAC=∠BED,根據(jù)三角形的內(nèi)角和得到∠BED+∠D=90°,等量代換得到∠BAC+∠D=90°,即可得到結(jié)論.
解答 (1)證明:∵△ABE為等腰直角三角形,
∴AB=BE,
∵∠ABE=90°,
∴∠ABE=∠DBE=90°,
在△ABC與△BDE中,$\left\{\begin{array}{l}{AB=BE}\\{∠ABE=∠DBE}\\{BC=BD}\end{array}\right.$,
∴△ABC≌△EBD;
(2)解:∵△ABC≌△EBD,
∴∠BAC=∠BED,
∵∠BED+∠D=90°,
∴∠BAC+∠D=90°,
∴∠AFD=90°,
∴∠AFE=90°.
點評 本題考查了全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),垂直的定義,熟練掌握全等三角形的性質(zhì)是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 144° | B. | 126° | C. | 150° | D. | 72° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com