【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點,長方形OACB的頂點A、B分別在x軸與y軸上,已知OA=3,OB=5,點D為y軸上一點,其坐標(biāo)為(0,1),點P從點A出發(fā)以每秒1個單位的速度沿線段AC﹣CB的方向運(yùn)動,當(dāng)點P與點B重合時停止運(yùn)動,運(yùn)動時間為t秒.

(1)當(dāng)點P經(jīng)過點C時,求直線DP的函數(shù)解析式;
(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;
②當(dāng)點D關(guān)于OP的對稱點落在x軸上時,求點P的坐標(biāo).
(3)點P在運(yùn)動過程中是否存在使△BDP為等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

【答案】
(1)

解:設(shè)此時直線DP解析式為y=kx+b,

將D(0,1),C(3,5)代入得: ,

解得:

則此時直線DP解析式為y= x+1


(2)

解:①當(dāng)點P在線段AC上時,OD=1,高為3,S=

當(dāng)點P在線段BC上時,OD=1,高為3+5﹣t=8﹣t,S= ×1×(8﹣t)=﹣ t+4;

②當(dāng)點D關(guān)于OP的對稱點落在x軸上時,D對稱點為(1,0),此時直線OP為y=x,

則此時點P的坐標(biāo)是(3,3)


(3)

解:存在,理由為:

若△BDP為等腰三角形,分三種情況考慮:

①當(dāng)BD=BP1=OB﹣OD=5﹣1=4,

在Rt△BCP1中,BD=4,BC=3,

根據(jù)勾股定理得:CP1= = ,

∴AP1=5﹣ ,即P1(3,5﹣ );

②當(dāng)BP2=DP2時,此時P2(3,3);

③當(dāng)DB=DP3=4時,

在Rt△DEP3中,DE=3,

根據(jù)勾股定理得:P3E= = ,

∴AP3=AE+EP3= +1,即P3(3, +1),

綜上,滿足題意的P坐標(biāo)為(3,3)或(3, +1)或(3,5﹣ ).


【解析】(1)設(shè)直線DP解析式為y=kx+b,將D與B坐標(biāo)代入求出k與b的值,即可確定出解析式;(2)①當(dāng)P在AC段時,三角形ODP底OD與高為固定值,求出此時面積;當(dāng)P在BC段時,底邊OD為固定值,表示出高,即可列出S與t的關(guān)系式;②當(dāng)D關(guān)于OP的對稱點落在x軸上時,直線OP為y=x,求出此時P坐標(biāo)即可;(3)存在,分別以BD,DP,BP為底邊三種情況考慮,利用勾股定理及圖形與坐標(biāo)性質(zhì)求出P坐標(biāo)即可.
【考點精析】本題主要考查了一次函數(shù)的性質(zhì)和一次函數(shù)的圖象和性質(zhì)的相關(guān)知識點,需要掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時,y隨x的增大而增大(2)當(dāng)k<0時,y隨x的增大而減;一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一元二次方程x22x10,根的判別式b24ac中的b表示的數(shù)是(

A.2B.2C.1D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖,我國漁政船在釣魚島海域C處測得釣魚島A在漁政船的北偏西30。的方向上,隨后漁政船以80海里/小時的速度向北偏東30°的方向航行,半小時后到達(dá)B處,此時又測得釣魚島A在漁政船的北偏西60°的方向上,求此時漁政船距釣魚島A的距離姓B.(結(jié)果保留小數(shù)點后一位,其中1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一線城市對出租車營運(yùn)價進(jìn)行了調(diào)整,調(diào)價前后的收費(fèi)標(biāo)準(zhǔn)對比如下:調(diào)整前,3公里及3公里以內(nèi)12.5元,3公里后里程價2.4/公里,無返空費(fèi);調(diào)整后, 2公里及2公里以內(nèi)10元,2公里后里程價2.4/公里,超過25公里部分,按里程價的30%加收返空費(fèi).

1)請你幫忙計算一下,調(diào)價后,若乘客乘坐出租車的行程為8公里,他比以前少付了多少錢(不考慮紅燈等因素)?

2網(wǎng)上流傳“24公里換車規(guī)避返空費(fèi),即乘客的行程超過25公里,就在24公里處下車,換乘另一輛出租車.但其實并不是所有行程超過25公里的乘客都需要換車

例如:①若行程為30公里:不換車,總費(fèi)用為:

10+23×2.4+5×2.4×130%=80.8元;

換車,總費(fèi)用為:10+22×2.4+10+4×2.482.4元,因此,行程30公里若換車,則費(fèi)用反而增加2.4元.

②若行程為40公里,不換車,總費(fèi)用為:

10+23×2.4+15×2.4×130%=112元,若換車,總費(fèi)用為:10+22×2.4+10+2.4×14106.4元,則可節(jié)約5.6元.

若設(shè)行程為x 公里(26x48 ),請用含x的式子分別表示出不換車的費(fèi)用和換車的費(fèi)用,并幫忙計算一下,行程超過多少公里后換車會就會節(jié)約費(fèi)用(不考慮紅燈等因素).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司銷售某一種新型通訊產(chǎn)品,已知每件產(chǎn)品的進(jìn)價為4萬元,每月銷售該種產(chǎn)品的總開支(不含進(jìn)價)總計11萬元.在銷售過程中發(fā)現(xiàn),月銷售量夕(件)與銷售單價x (萬元)之間存在著如圖所示的一次函數(shù)關(guān)系、

(1)求y關(guān)于x的函數(shù)關(guān)系式(直接寫出結(jié)果)

(2)試寫出該公司銷售該種產(chǎn)品的月獲利z(萬元)關(guān)于銷售單價x(萬元)的函數(shù)關(guān)系式、當(dāng)銷售單價x為何值時,月獲利最大?并求這個最大值(月獲利一月銷售額一月銷售產(chǎn)品總進(jìn)價一月總開支)

(3)若公司希望該產(chǎn)品一個月的銷售獲利不低于5萬元,借助(2)中函數(shù)的圖象,請你幫助該公司確定銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,你認(rèn)為銷售單價應(yīng)定為多少萬元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校一棟5層的教學(xué)大樓,第一層沒有教室,二至五層,每層樓有6間教室,進(jìn)出這棟大樓共有兩道大小相同的大門和一道小門(平時小門不開).安全檢查中,對這3道門進(jìn)行了測試:當(dāng)同時開啟一道大門和一道小門時,3分鐘內(nèi)可以通過540名學(xué)生,若一道大門平均每分鐘比一道小門可多通過60名學(xué)生.

1)求平均每分鐘一道大門和一道小門各可以通過多少名學(xué)生?

2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學(xué)生應(yīng)在5分鐘內(nèi)安全撤離.這棟教學(xué)大樓每間教室平均有45名學(xué)生,問:在緊急情況下只開啟兩道大門是否可行?為什么?3道門都開啟呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場試銷一種成本為50元/件的恤.經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元/件)符合一次函數(shù)關(guān)系,試銷數(shù)據(jù)如下表:

售價(元/件)

……

55

60

70

……

銷量(件)

……

75

70

60

……

(1)求一次函數(shù)的表達(dá)式;

(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價之間的關(guān)系式;銷售單價定為多少時,商場可獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列由四舍五入得到的近似數(shù)說法正確的是( )
A.0.720精確到百分位
B.5.078×104精確到千分位
C.3.6萬精確到十分位
D.2.90精確到0.01

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是(
A.a2+a2=a4
B.(a23=a5
C.a+2=2a
D.(ab)3=a3b3

查看答案和解析>>

同步練習(xí)冊答案