(2010•河北區(qū)模擬)若二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸有兩個不同的交點A(1,0)、B(-3,0),與y軸的負(fù)半軸交于點C,且S△ABC=6.
(Ⅰ)求該二次函數(shù)的解析式和頂點P的坐標(biāo);
(Ⅱ)經(jīng)過A、B、P三點畫⊙O′,求⊙O′的面積;
(Ⅲ)設(shè)拋物線上有一動點M(a,b),連AM,BM,試判斷△ABM能否是直角三角形?若能,求出M點的坐標(biāo);若不能,請說明理由.
分析:(Ⅰ)由A(1,0)、B(-3,0),與y軸的負(fù)半軸交于點C,且S△ABC=6,即可求得c的值,即點C的坐標(biāo),然后利用待定系數(shù)法即可求得此二次函數(shù)的解析式,然后利用配方法即可求得頂點P的坐標(biāo);
(Ⅱ)由經(jīng)過A、B、P三點畫⊙O′,即可知O′在以△ABP的三邊的垂直平分線的交點處,則過點P作PC⊥AB于C,根據(jù)二次函數(shù)的對稱性,可知點O′在此直線PC上,即可設(shè)O′為(-1,m),然后由O′P=O′B,即可求得m的值,繼而得到⊙O′的半徑長,利用圓的面積公式求得⊙O′的面積;
(3)由拋物線上有一動點M(a,b),△ABM是直角三角形,可知∠AMB是直角,然后設(shè)M(x,x2+2x-3),根據(jù)勾股定理,即可求得方程:(x+3)2+(x2+2x-3)2+(x-1)2+(x2+2x-3)2=16,解此方程即可求得M點的坐標(biāo).
解答:解:(Ⅰ)∵y軸的負(fù)半軸交于點C(0,c),
∴c<0,
∵A(1,0)、B(-3,0),
∴AB=4,
∴S△ABC=
1
2
×AB×|c|=6,
∴c=-3,
∴點C的坐標(biāo)為(0,-3),
a+b+c=0
9a-3b+c=0
c=-3

解得:
a=1
b=2
c=-3
,
∴該二次函數(shù)的解析式為:y=x2+2x-3,
∵y=x2+2x-3=(x+1)2-4,
∴頂點P的坐標(biāo)為(-1,-4);

(Ⅱ)如圖:根據(jù)題意得:PA=PB,
過點P作PC⊥AB于C,
∴AC=BC,
∴O′在PC上,
設(shè)O′的坐標(biāo)為(-1,m),
∵O′P=O′B=
BC2+O′C2
,
∴m-(-4)=
4+m2
,
解得:m=-
3
2

∴O′P=-
3
2
+4=
5
2
,
∴⊙O′的面積為:
25
4
π;

(Ⅲ)存在.
設(shè)拋物線上有一動點M(x,x2+2x-3),
若△ABM是直角三角形,
則∠AMB=90°,
∴AM2+BM2=AB2,
∴(x+3)2+(x2+2x-3)2+(x-1)2+(x2+2x-3)2=16,
∴2(x2+2x-3)2+(2x2+4x+10)=16,
∴2(x2+2x-3)2+2(x2+2x-3)+16=16,
∴(x2+2x-3)(x2+2x-3+1)=0,
解得:x1=-3(舍去),x2=1(舍去),x3=
3
-1,x4=-
3
-1,
當(dāng)x3=
3
-1時,y=-1,
當(dāng)x4=-
3
-1時,y=-1,
∴M點的坐標(biāo)為:(
3
-1,-1)或(-
3
-1,-1).
點評:此題考查了待定系數(shù)法求二次函數(shù)的解析式、三角形的外接圓、勾股定理、兩點間的距離公式等知識.此題綜合性很強,難度較大,解此題的關(guān)鍵是注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•河北區(qū)模擬)邊長為a的正三角形的半徑等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•河北區(qū)模擬)書包里有數(shù)學(xué)書2本、英語書4本、語文書3本、物理書2本、化學(xué)書1本,從中任意抽取一本,則恰好是數(shù)學(xué)書的概率是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•河北區(qū)模擬)在半徑為13的⊙O中,如果弦AB的長為10,那么它的弦心距等于
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•河北區(qū)模擬)已知(-2,y1),(-1,y2),(3,y3)是二次函數(shù)y=x2+x+m圖象上的點,則將y1,y2,y3從小到大排列是
y2<y1<y3
y2<y1<y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•河北區(qū)模擬)已知二次函數(shù)的圖象經(jīng)過點(0,5),(1,0),(2,-3).求這個二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊答案