【題目】大潤發(fā)超市進了一批成本為8元/個的文具盒.調查發(fā)現(xiàn):這種文具盒每個星期的銷售量y(個)與它的定價x(元/個)的關系如圖所示:
(1)求這種文具盒每個星期的銷售量y(個)與它的定價x(元/個)之間的函數(shù)關系式(不必寫出自變量x的取值范圍);
(2)每個文具盒的定價是多少元時,超市每星期銷售這種文具盒(不考慮其他因素)可獲得的利潤為1200元?
(3)若該超市每星期銷售這種文具盒的銷售量不少于115個,且單件利潤不低于4元(x為整數(shù)),當每個文具盒定價多少元時,超市每星期利潤最高?最高利潤是多少?
【答案】
(1)
解:設這種文具盒每個星期的銷售量y(個)與它的定價x(元/個)之間的函數(shù)關系式y(tǒng)=kx+b,由題意,得
,
解得: ,
則y=﹣10x+300
(2)
解:由題意,得
(x﹣8)y=1200,
(x﹣8)(﹣10x+300)=1200
解得:x1=18,x2=20,
答:當定價為18元或20元時,利潤為1200元
(3)
解:根據(jù)題意得:
得:12≤x≤18.5,且x為整數(shù).
設每星期所獲利潤為W元,由題意,得
W=(x﹣8)y
=(x﹣8)(﹣10x+300)
=﹣10(x2﹣38x+240)
=﹣10(x﹣19)2+1210,
∵a=﹣10<0,
∴拋物線開口向下,在對稱軸的左邊W隨x的增大而增大
∴當x=18時,W有最大值,W最大=1200.
答:每個文具盒的定價是18元時,可獲得每星期最高銷售利潤1200元.
【解析】(1)根據(jù)圖象利用待定系數(shù)法直接求出函數(shù)的解析式即可;(2)根據(jù)利潤等于每個利潤×數(shù)量建立方程求出其解就可以了;(3)根據(jù)條件先求出售價的取值范圍,再表示出利潤的解析式,根據(jù)函數(shù)的性質就可以求出結論.
【考點精析】解答此題的關鍵在于理解確定一次函數(shù)的表達式的相關知識,掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且 = = ,連接AC,AF,過點C作CD⊥AF交AF延長線于點D,垂足為D.
(1)求證:CD是⊙O的切線;
(2)若CD=2 ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了提高產品的附加值,某公司計劃將研發(fā)生產的1200件新產品進行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關人員分別到這兩個工廠了解情況,獲得如下信息:
信息一:甲工廠單獨加工完成這批產品比乙工廠單獨加工完成這批產品多用10天;
信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.
根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產品.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問用該草坪鋪滿這塊空地共需花費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一樓房AB后有一假山,其斜坡CD坡比為1: ,山坡坡面上點E處有一休息亭,測得假山坡腳C與樓房水平距離BC=6米,與亭子距離CE=20米,小麗從樓房頂測得點E的俯角為45°.
(1)求點E距水平面BC的高度;
(2)求樓房AB的高.(結果精確到0.1米,參考數(shù)據(jù) ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.
(1)求證:△BAD≌△CAE;
(2)試猜想BD、CE有何特殊位置關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的盒子中裝有2枚黑色的棋子和1枚白色的棋子,每枚棋子除了顏色外其余均相同.從盒中隨機摸出一枚棋子,記下顏色后放回并攪勻,再從盒子中隨機摸出一枚棋子,記下顏色,用畫樹狀圖(或列表)的方法,求兩次摸出的棋子顏色不同的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEO的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖所示 AD、AE分別是△ABC的中線、高,且AB=5cm,AC=3cm,,則△ABD與△ACD的周長之差為_________,△ABD與△ACD的面積關系為_________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com