【題目】已知△ABC,AB=AC,將△ABC沿BC方向平移得到△DEF.
(1)如圖1,連接BD,AF,則BD AF(填“>”、“<”或“=”);
(2)如圖2,M為AB邊上一點(diǎn),過M作BC的平行線MN分別交邊AC,DE,DF于點(diǎn)G,H,N,連接BH,GF,求證:BH=GF.
【答案】
(1)=
(2)
證明:如圖:
MN∥BF,
△AMG∽△ABC,△DHN∽△DEF,
=,=,
∴MG=HN,MB=NF.
在△BMH和△FNG中,
,
△BMH≌△FNG(SAS),
∴BH=FG.
【解析】(1)根據(jù)等腰三角形的性質(zhì),可得∠ABC與∠ACB的關(guān)系,根據(jù)平移的性質(zhì),可得AC與DF的關(guān)系,根據(jù)全等三角形的判定與性質(zhì),可得答案;
(2)根據(jù)相似三角形的判定與性質(zhì),可得GM與HN的關(guān)系,BM與FN的關(guān)系,根據(jù)全等三角形的判定與性質(zhì),可得答案.
【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和平移的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握等腰三角形的兩個(gè)底角相等(簡稱:等邊對(duì)等角);①經(jīng)過平移之后的圖形與原來的圖形的對(duì)應(yīng)線段平行(或在同一直線上)且相等,對(duì)應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對(duì)應(yīng)點(diǎn)所連的線段平行(或在同一直線上)且相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某次訓(xùn)練中,甲、乙兩名射擊運(yùn)動(dòng)員各射擊10發(fā)子彈的成績統(tǒng)計(jì)圖如圖所示,對(duì)于本次訓(xùn)練,有如下結(jié)論:①S甲2>S乙2;②S甲2<S乙2;③甲的射擊成績比乙穩(wěn)定;④乙的射擊成績比甲穩(wěn)定,由統(tǒng)計(jì)圖可知正確的結(jié)論是( 。
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的弦,CD是⊙O的直徑,CD⊥AB,垂足為E,且點(diǎn)E是OD的中點(diǎn),⊙O的切線BM與AO的延長線相交于點(diǎn)M,連接AC,CM.
(1)若AB=4,求的長;(結(jié)果保留π)
(2)求證:四邊形ABMC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次連接△A1B1C1三邊中點(diǎn),得△A2B2C2 , 再依次連接△A2B2C2的三邊中點(diǎn)得△A3B3C3 , …,則△A5B5C5的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),拋物線y1=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A(x1 , 0),B(x2 , 0),與y軸交于點(diǎn)C,且O,C兩點(diǎn)間的距離為3,x1x2<0,|x1|+|x2|=4,點(diǎn)A,C在直線y2=﹣3x+t上.
(1)求點(diǎn)C的坐標(biāo)
(2)當(dāng)y1隨著x的增大而增大時(shí),求自變量x的取值范圍;
(3)將拋物線y1向左平移n(n>0)個(gè)單位,記平移后y隨著x的增大而增大的部分為P,直線y2向下平移n個(gè)單位,當(dāng)平移后的直線與P有公共點(diǎn)時(shí),求2n2﹣5n的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:(1)(π﹣3)0+﹣2cos45°﹣
(2)若x+=3,求的值.
(1)(π﹣3)0+﹣2cos45°﹣
(2)若x+=3,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com