如圖,已知二次函數(shù)y=ax2-bx-c的圖象與x軸交于A、B兩點(diǎn),當(dāng)時(shí)x=1,二次函數(shù)取得最大值4,且|OA|=-
1
n
+2,
(1)求二次函數(shù)的解析式.
(2)已知點(diǎn)P在二次函數(shù)的圖象上,且有S△PAB=8,求點(diǎn)P的坐標(biāo).
(1)由題意,設(shè)二次函數(shù)為y=a(x-1)2+4,
令y=0,解得:x=1±
2
-a
,
故A的橫坐標(biāo)為x=1+
2
-a
,即|OA|=-
1
a
+2=1+
2
-a
,
解得:a=-1,
則二次函數(shù)的解析式是
y=-(x-1)2+4,即y=-x2+2x+3;

(2)令y=0,得A、B坐標(biāo)為(3,0),(-1,0),
則|AB|=4,
設(shè)點(diǎn)P的坐標(biāo)為(x,y),
由題意S△PAB=8,得|y|=4,
則y=±4,即4=-x2+2x+3或-4=-x2+2x+3,
解得:x=1或x=1±2
2
,
故所求點(diǎn)P的坐標(biāo)為(1,4),(1+2
2
,-4),(1-2
2
,-4).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖,在平面直角坐標(biāo)系中,以BC為直徑的⊙M交x軸正半軸于點(diǎn)A、B,交y軸正半軸于點(diǎn)E、F,過點(diǎn)C作CD垂直y軸,垂足為點(diǎn)D,連接AM并延長(zhǎng)交⊙M于點(diǎn)P,連接PE.
(1)求證:∠FAO=∠EAM;
(2)若二次函數(shù)y=-x2+px+q的圖象經(jīng)過點(diǎn)B、C、E,且以C為頂點(diǎn),當(dāng)點(diǎn)B的橫坐標(biāo)等于2時(shí),四邊形OECB的面積是
11
4
,求這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知:拋物線y=
1
2
x2+bx+c
與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過B、C兩點(diǎn)的直線是y=
1
2
x-2
,連接AC.
(1)寫出B、C兩點(diǎn)坐標(biāo),并求拋物線的解析式;
(2)判斷△ABC的形狀,并說明理由;
(3)若△ABC內(nèi)部能否截出面積最大的矩形DEFG(頂點(diǎn)D、E、F、G在△ABC各邊上)?若能,求出在AB邊上的矩形頂點(diǎn)的坐標(biāo);若不能,請(qǐng)說明理由.
{拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)是(-
b
2a
4ac-b2
4a
)
}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,平面直角坐標(biāo)系xOy中,拋物線y=
1
2
x2+bx+c
與x軸交于A、B兩點(diǎn),點(diǎn)C是AB的中點(diǎn),CD⊥AB且CD=AB.直線BE與y軸平行,點(diǎn)F是射線BE上的一個(gè)動(dòng)點(diǎn),連接AD、AF、DF.
(1)若點(diǎn)F的坐標(biāo)為(
9
2
,1),AF=
17

①求此拋物線的解析式;
②點(diǎn)P是此拋物線上一個(gè)動(dòng)點(diǎn),點(diǎn)Q在此拋物線的對(duì)稱軸上,以點(diǎn)A、F、P、Q為頂點(diǎn)構(gòu)成的四邊形是平行四邊形,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);
(2)若2b+c=-2,b=-2-t,且AB的長(zhǎng)為kt,其中t>0.如圖2,當(dāng)∠DAF=45°時(shí),求k的值和∠DFA的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(3,0),二次函數(shù)y=x2的圖象記為拋物線l1

(1)平移拋物線l1,使平移后的拋物線經(jīng)過A、B兩點(diǎn),記為拋物線l2,求拋物線l2的函數(shù)表達(dá)式;
(2)設(shè)拋物線l2的頂點(diǎn)為C,請(qǐng)你判斷y軸上是否存在點(diǎn)K,使得∠BKC=90°,若存在,求出K點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由;
(3)拋物線l2與y軸交于點(diǎn)D,點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P,作y軸的平行線,交拋物線l2于點(diǎn)E,求線段PE長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長(zhǎng)為1,當(dāng)點(diǎn)E在邊BC上運(yùn)動(dòng)時(shí)(不與正方形的頂點(diǎn)重合),連接AE,過點(diǎn)E作EF⊥AE交CD于點(diǎn)F.設(shè)BE=x,CF=y,求下列問題:
(1)證明△ABE△ECF;
(2)求出y關(guān)于x的函數(shù)關(guān)系式;
(3)試求當(dāng)x取何值時(shí)?y有最大或最小值,是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,若以O(shè)為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面之間坐標(biāo)系,點(diǎn)B在第一象限內(nèi),將Rt△OAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.
(1)點(diǎn)C的坐標(biāo)為______;
(2)若拋物線y=ax2+bx經(jīng)過C,A兩點(diǎn),求此拋物線的解析式;
(3)若拋物線的對(duì)稱軸與OB交于點(diǎn)D,點(diǎn)P為線段DB上一點(diǎn),過P作y軸的平行線,交拋物線于點(diǎn)M,問:是否存在這樣的點(diǎn)P,使得四邊形CDPM為等腰梯形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知AB=2,C是AB上一點(diǎn),四邊形ACDE和四邊形CBFG,都是正方形,設(shè)BC=x,
(1)AC=______;
(2)設(shè)正方形ACDE和四邊形CBFG的總面積為S,用x表示S的函數(shù)表達(dá)式為S=______.
(3)總面積S有最大值還是最小值?這個(gè)最大值或最小值是多少?
(4)總面積S取最大值或最小值時(shí),點(diǎn)C在AB的什么位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2+5x+m經(jīng)過點(diǎn)A(1,0),與y軸交于點(diǎn)B,
(1)求m的值;
(2)若拋物線與x軸的另一交點(diǎn)為C,求△CAB的面積;
(3)P是y軸正半軸上一點(diǎn),且△PAB是以AB為腰的等腰三角形,試求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案