【題目】每到春夏交替時節(jié),雄性楊樹會以漫天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾.為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調(diào)查了部分市民(問卷調(diào)查表如圖所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.

根據(jù)以上統(tǒng)計圖,解答下列問題:

1)本次接受調(diào)查的市民公有__________人;

2)請補全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中請求出扇形的圓心角度數(shù).

【答案】12000;(2)詳見解析;(3288°

【解析】

1)根據(jù)扇形統(tǒng)計圖和條形統(tǒng)計圖,利用A類的數(shù)據(jù)求出總調(diào)查人數(shù);

2)調(diào)查的總?cè)藬?shù)乘以D所占的比例,即可求出D的人數(shù),從而補全條形統(tǒng)計圖;

3)先求出E所占的百分比,利用圓心角公式求解即可.

(1) 根據(jù)扇形統(tǒng)計圖和條形統(tǒng)計圖可知,選A的有300人,占總?cè)藬?shù)的15%

(人)

本次接受調(diào)查的市民公有2000人

(2) D對應(yīng)人數(shù)為:2000×25%500

補全條形統(tǒng)計圖如下圖所示

(3)扇形E所在的百分比為:115%12%40%25%8%

∴扇形E的圓心角度數(shù)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某輪船沿正北方向航行,在點處測得燈塔在北偏西方向上,輪船以每小時海里的速度航行小時到達后,測得燈塔在北偏西方向上,問輪船到達燈塔的正東方向時,輪船距燈塔有多遠?(結(jié)果精確到海里,參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD 中,E、F為對角線AC上的兩點,且AE=CF

1)求證:四邊形DEBF是平行四邊形;

2)如果DE=3EF=4,DF=5,求EB、DF兩平行線之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察表格:根據(jù)表格解答下列問題:

x

0

1

2

ax2

0

1

4

ax2+bx+c

﹣3

-4

﹣3

(l)a,b,c的值;

(2)在如圖的直角坐標(biāo)系中畫出函數(shù)y=ax2+bx+c的圖象,并根據(jù)圖象,直接寫出當(dāng)x取什么實數(shù)時,不等式ax2+bx+c>﹣3成立;

(3)該圖象與x軸兩交點從左到右依次分別為A、B,與y軸交點為C,求過這三個點的外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,表示三個居民小區(qū),為豐富居民們的文化生活,現(xiàn)準(zhǔn)備建一個文化廣場,使它到三個小區(qū)的距離相等,則文化廣場應(yīng)建在(  )

A.,兩邊高線的交點處B.,兩邊中線的交點處

C.,兩邊垂直平分線的交點處D.,兩內(nèi)角平分線的交點處

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點是等邊內(nèi)一點, .將繞點按順時針方向旋轉(zhuǎn),連接

(1)求證: 是等邊三角形;

(2)當(dāng)時,試判斷的形狀,并說明理由;

(3)探究:當(dāng)為多少度時, 是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中雅培粹學(xué)校舉辦運動會,全校有3000名同學(xué)報名參加校運會,為了解各類運動賽事的分布情況,從中抽取了部分同學(xué)進行統(tǒng)計:A.田徑類,B.球類,C.團體類,D.其他,并將統(tǒng)計結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.

1)這次統(tǒng)計共抽取了 位同學(xué),扇形統(tǒng)計圖中的 ,的度數(shù)是 ;

2)請將條形統(tǒng)計圖補充完整;

3)估計全校共多少學(xué)生參加了球類運動.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雙曲線在第一象限內(nèi)的圖象如圖,作一條平行于x軸的直線交y1,y2B、A,連接OA,過BBCOA,交x軸于點C,若四邊形OABC的面積為3,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2﹣2ax﹣3a(a<0)與x軸交于A、B兩點(點A在點B的左側(cè)),經(jīng)過點A的直線l:y=kx+by軸負半軸交于點C,與拋物線的另一個交點為D,且CD=4AC.

(1)求出點A的坐標(biāo)和點D的橫坐標(biāo);

(2)點E是直線l上方的拋物線上的動點,若△ACE的面積的最大值為,求a的值;

(3)設(shè)P是拋物線的對稱軸上的一點,點Q在拋物線上,以點A、D、P、Q為頂點的四邊形能否成為矩形?若能,直接寫出點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案