【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣5x+5與x軸、y軸分別交于A,C兩點,拋物線y=x2+bx+c經(jīng)過A,C兩點,與x軸交于另一點B.
(1)求拋物線解析式及B點坐標(biāo);
(2)x2+bx+c≤﹣5x+5的解集是 ;
(3)若點M為拋物線上一動點,連接MA、MB,當(dāng)點M運動到某一位置時,△ABM面積為△ABC的面積的倍,求此時點M的坐標(biāo).
【答案】(1)(5,0);(2)0≤x≤1;(3)(3,﹣4)或(3+2,4)或(3﹣2,4)
【解析】
(1)根據(jù)已知條件將A點、C點代入拋物線即可求解;
(2)觀察直線在拋物線上方的部分,根據(jù)拋物線與直線的交點坐標(biāo)即可求解;
(3)先設(shè)動點M的坐標(biāo),再根據(jù)兩個三角形的面積關(guān)系即可求解.
(1)因為直線y=﹣5x+5與x軸、y軸分別交于A,C兩點,
所以當(dāng)x=0時,y=5,所以C(0,5)
當(dāng)y=0時,x=1,所以A(1,0)
因為拋物線y=x2+bx+c經(jīng)過A,C兩點,
所以c=5,1+b+5=0,解得b=﹣6,
所以拋物線解析式為y=x2﹣6x+5.
當(dāng)y=0時,0=x2﹣6x+5.解得x1=1,x2=5.
所以B點坐標(biāo)為(5,0).
答:拋物線解析式為y=x2﹣6x+5,B點坐標(biāo)為(5,0);
(2)觀察圖象可知:
x2+bx+c≤﹣5x+5的解集是0≤x≤1.
故答案為0≤x≤1.
(3)設(shè)M(m,m2﹣6m+5)
因為S△ABM=S△ABC=×4×5=8.
所以×4|m2﹣6m+5|=8
所以|m2﹣6m+5|=±4.
所以m2﹣6m+9=0或m2﹣6m+1=0
解得m1=m2=3或m=3±2.
所以M點的坐標(biāo)為(3,﹣4)或(3+2,4)或(3﹣2,4).
答:此時點M的坐標(biāo)為(3,﹣4)或(3+2,4)或(3﹣2,4).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菲爾茲獎是國際上享有崇高聲譽的一個數(shù)學(xué)獎項,每4年評選一次,頒給有卓越貢獻的年輕數(shù)學(xué)家,被視為數(shù)學(xué)界的諾貝爾獎.下面的數(shù)據(jù)是從1936年至2014年45歲以下菲爾茲獎得住獲獎時的年齡(歲):39 35 33 39 27 33 35 31 31 37 32 38 36 31 39 32 38 37 34 34 38 32 35 36 33 32 35 36 37 39 38 40 38 37 39 38 34 33 40 36 36 37 31 38 38 37 35 40 39 37
請根據(jù)以上數(shù)據(jù),解答以下問題:
(1)小彬按“組距為5”列出了如下的頻數(shù)分布表,每組數(shù)據(jù)含最小值不含最大值,請將表中空缺的部分補充完整,并補全頻數(shù)分布直方圖:
(2)在(1)的基礎(chǔ)上,小彬又畫出了如圖所示的扇形統(tǒng)計圖,圖中B組所對的圓心角的度數(shù)為 ;
(3)根據(jù)(1)中的頻數(shù)分布直方圖試描述這50位菲爾茲獎得主獲獎時的年齡的分布特征.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,⊙O過AC的中點D,DE切⊙O于點D,交BC于E.
(1)求證DE⊥BC;
(2)若⊙O的半徑為5,BE=2,求DE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD是∠BAC的平分線,AB∶BD=.
(1)求tan∠DAC的值.
(2)若BD=4,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,M是AB的中點,動點P從點A出發(fā),
沿AC方向勻速運動到終點C,動點Q從點C出發(fā),沿CB方向勻速運動到終點B.已知P,Q兩點同時出發(fā),并同時到達終點.連結(jié)MP,MQ,PQ.在整個運動過程中,△MPQ的面積大小變化情況是【 】
A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初三(1)班的同學(xué)踴躍為“雅安蘆山地震”捐款,根據(jù)捐款情況(捐款數(shù)為正數(shù))制作以下統(tǒng)計圖表,但生活委員不小心把墨水滴在統(tǒng)計表上,部分?jǐn)?shù)據(jù)看不清楚.
(1)全班有多少人捐款?
(2)如果捐款0~20元的人數(shù)在扇形統(tǒng)計圖中所占的圓心角為72°,那么捐款21~40元的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當(dāng)﹣1<x<3時,y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高中學(xué)校為高一新生設(shè)計的學(xué)生板凳的正面視圖如圖所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應(yīng)為多長?(材質(zhì)及其厚度等暫忽略不計).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com