(2009•杭州)如圖,AB為半圓的直徑,C是半圓弧上一點(diǎn),正方形DEFG的一邊DG在直徑AB上,另一邊DE過(guò)△ABC的內(nèi)切圓圓心O,且點(diǎn)E在半圓弧上.
①若正方形的頂點(diǎn)F也在半圓弧上,則半圓的半徑與正方形邊長(zhǎng)的比是   
②若正方形DEFG的面積為100,且△ABC的內(nèi)切圓半徑r=4,則半圓的直徑AB=   
【答案】分析:①根據(jù)圓和正方形的對(duì)稱性可知:GH=DG=GF,在直角三角形FGH中,利用勾股定理可得HF=,從而用含a的代數(shù)式表示半圓的半徑為a,正方形邊長(zhǎng)為2a,所以可求得半圓的半徑與正方形邊長(zhǎng)的比;
②連接EB、AE,OH、OI,可得OHCI是正方形,且邊長(zhǎng)是4,可設(shè)BD=x,AD=y,則BD=BH=x,AD=AI=y,分別利用直角三角形ABC和直角三角形AEB中的勾股定理和相似比作為相等關(guān)系列方程組求解即可求得半圓的直徑AB=21.
解答:解:①如圖,根據(jù)圓和正方形的對(duì)稱性可知:GH=DG=GF,
H為半圓的圓心,不妨設(shè)GH=a,則GF=2a,
在直角三角形FGH中,由勾股定理可得HF=.由此可得,半圓的半徑為a,正方形邊長(zhǎng)為2a,
所以半圓的半徑與正方形邊長(zhǎng)的比是a:2a=:2;

②因?yàn)檎叫蜠EFG的面積為100,所以正方形DEFG邊長(zhǎng)為10.
連接EB、AE,OI、OJ,
∵AC、BC是⊙O的切線,
∴CJ=CI,∠OJC=∠OIC=90°,
∵∠ACB=90°,
∴四邊形OICJ是正方形,且邊長(zhǎng)是4,
設(shè)BD=x,AD=y,則BD=BI=x,AD=AJ=y,
在直角三角形ABC中,由勾股定理得(x+4)2+(y+4)2=(x+y)2①;
在直角三角形AEB中,
∵∠AEB=90°,ED⊥AB,
∴△ADE∽△BDE∽△ABE,
于是得到ED2=AD•BD,即102=x•y②.
解①式和②式,得x+y=21,
即半圓的直徑AB=21.
點(diǎn)評(píng):本題綜合考查了圓、三角形、方程等知識(shí),是一道綜合性很強(qiáng)的題目,難度偏上,需要正確理解相關(guān)知識(shí)點(diǎn)及懂得運(yùn)用方能很好的解答本題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年浙江省杭州市余杭區(qū)良渚中學(xué)中考數(shù)學(xué)模擬試卷(吳建德)(解析版) 題型:解答題

(2009•杭州)如圖,已知線段a.
(1)只用直尺(沒(méi)有刻度的尺)和圓規(guī),求作一個(gè)直角三角形ABC,以AB和BC分別為兩條直角邊,使AB=a,BC=a(要求保留作圖痕跡,不必寫出作法);
(2)若在(1)作出的Rt△ABC中,AB=4cm,求AC邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年中考復(fù)習(xí)專項(xiàng)訓(xùn)練《線段、角、相交線、平行線》(解析版) 題型:解答題

(2009•杭州)如圖,在等腰梯形ABCD中,∠BCD=60°,AD∥BC,且AD=DC,E、F分別在AD、DC的延長(zhǎng)線上,且DE=CF,AF、BE于點(diǎn)P.
(1)求證:AF=BE;
(2)請(qǐng)你猜測(cè)∠BPF的度數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年中考復(fù)習(xí)專項(xiàng)訓(xùn)練《三角形的邊和角》(解析版) 題型:解答題

(2009•杭州)如圖,已知線段a.
(1)只用直尺(沒(méi)有刻度的尺)和圓規(guī),求作一個(gè)直角三角形ABC,以AB和BC分別為兩條直角邊,使AB=a,BC=a(要求保留作圖痕跡,不必寫出作法);
(2)若在(1)作出的Rt△ABC中,AB=4cm,求AC邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年浙江省杭州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•杭州)如圖,在菱形ABCD中,∠A=110°,E,F(xiàn)分別是邊AB和BC的中點(diǎn),EP⊥CD于點(diǎn)P,則∠FPC=( )

A.35°
B.45°
C.50°
D.55°

查看答案和解析>>

同步練習(xí)冊(cè)答案