【題目】如圖,AB為半圓O的直徑,AD、BC分別切⊙OA,B兩點(diǎn),CD切⊙O于點(diǎn)EADCD相交于D,BCCD相交于C,連結(jié)OD、OEOC,對(duì)于下列結(jié)論:

AD+BC=CD②∠DOC=90°;S梯形ABCD=CDOA

其中結(jié)論正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】試題分析:根據(jù)切線的性質(zhì)可得:AD=DE,BC=CE,則AD+BC=DE+CE=CD,則①正確;根據(jù)題意可知:△AOD和△EOD全等,△BOC和△EOC全等,則∠DOC=90°,故②正確;梯形的面積=(AD+BC)·AB÷2=CD·AB÷2=CD·OA,則③錯(cuò)誤;根據(jù)題意可知:△DOE和△DCO相似,則④正確,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,,的垂直平分線交對(duì)角線于點(diǎn),為垂足,連結(jié),則等于(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:

①b2﹣4c>0;②b+c=0;③2b+c+3=0;④當(dāng)1<x<3時(shí),x2+(b﹣1)x+c<0

其中正確的有( 。﹤(gè)

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線ABCD,MN分別交ABCD于點(diǎn)E,F,∠BEF與∠DFE的兩條平分線相交于點(diǎn)P1,∠BEP1與∠DFP1的兩條平分線相交于點(diǎn)P2,則∠P2的度數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙與菱形在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)軸上,且點(diǎn)在點(diǎn)的右側(cè).

)求菱形的周長(zhǎng).

)若⊙沿軸向右以每秒個(gè)單位長(zhǎng)度的速度平移,菱形沿軸向左以每秒個(gè)單位長(zhǎng)度的速度平移,設(shè)菱形移動(dòng)的時(shí)間為(秒),當(dāng)⊙相切,且切點(diǎn)為的中點(diǎn)時(shí),連接,求的值及的度數(shù).

)在()的條件下,當(dāng)點(diǎn)所在的直線的距離為時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一個(gè)由小正方體組成的幾何體的左視圖和俯視圖.

該幾何體最少需要幾塊小正方體?最多可以有幾塊小正方體?

請(qǐng)畫(huà)出該幾何體的所有可能的主視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線與坐標(biāo)軸分別交于點(diǎn),與直線交于點(diǎn)是線段上的動(dòng)點(diǎn),連接,若是等腰三角形,則的長(zhǎng)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“宏揚(yáng)傳統(tǒng)文化,打造書(shū)香校園”活動(dòng)中,學(xué)校計(jì)劃開(kāi)展四項(xiàng)活動(dòng):“A:國(guó)學(xué)誦讀”,“B:演講”,“C:課本劇”,“D:書(shū)法”.每位同學(xué)必須且只能參加其中一項(xiàng)活動(dòng),學(xué)校為了了解學(xué)生的意愿,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計(jì)如圖所示:

(1) 此次一共抽取 名學(xué)生進(jìn)行統(tǒng)計(jì)調(diào)查;扇形統(tǒng)計(jì)圖中,活動(dòng)D所占圓心角為 °

(2) 請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3) 學(xué)校共有720名學(xué)生希望參加活動(dòng)A,試估算該校共有多少名學(xué)生.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABBC,AE平分∠BADBC于點(diǎn)E,AEDE,∠1+2=90°M、N分別是BA,CD延長(zhǎng)線上的點(diǎn),∠EAM和∠EDN的平分線交于點(diǎn)F,下列結(jié)論:①ABCD;②∠AEB+ADC=180°;③DE平分∠ADC;④∠F為定值.其中結(jié)論正確的有(

A. 4個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案