【題目】如圖,已知AC平分∠BAD,CEABE 點(diǎn),∠ADC+B=180°求證:

1BC=CD

22AE=AB+AD

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析

【解析】

1)過(guò)CCFADF,根據(jù)角平分線的性質(zhì)得:CFCE,根據(jù)AAS證明△FDC≌△EBC可得結(jié)論;

2)由(1)中的全等得:DFBE,證明RtAFCRtAEC,得AEAF,根據(jù)線段的和與差得出結(jié)論.

證明:(1)過(guò)CCFADF,

AC平分∠BADCEAB,

CFCE

∵∠ADC+∠CBE180°,∠ADC+∠FDC180°,

∴∠CBE=∠FDC,

在△FDC和△EBC中,

,

∴△FDC≌△EBCAAS),

CDBC

2)∵△FDC≌△EBC,

DFBE

RtAFCRtAEC中,

RtAFCRtAECHL),

AFAE

ABADAEBEADAEDFADAEAF2AE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點(diǎn)E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.

(1)求證:四邊形ABEF為菱形;

(2)AE,BF相交于點(diǎn)O,若BF=6,AB=5,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠ACB90°,ACBC,將ABC沿EF折疊,使點(diǎn)A落在直角邊BC上的D點(diǎn)處,設(shè)EFABAC邊分別交于點(diǎn)E、F,如果折疊后CDFBDE均為等腰三角形,那么∠B_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,交矩形的對(duì)角線BD于點(diǎn)E,點(diǎn)F是BC的中點(diǎn),連接EF.

(1)試判斷EF與⊙O的位置關(guān)系,并說(shuō)明理由.

(2)若DC=2,EF=,點(diǎn)P是⊙O上不與E、C重合的任意一點(diǎn),則∠EPC的度數(shù)為 (直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)C是線段AB上一點(diǎn),在線段AB的同側(cè)作CADCBE,直線BDAE相交于點(diǎn)F,CA=CD,CB=CE,∠ACD=BCE。

1)如圖①,若∠ACD=600,則∠AFB=___________;若∠ACD=,則∠AFB=___________。

2)如圖②,將圖①中的CAD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意角度(交點(diǎn)F至少在BD、AE中的一條線段上),試探究∠AFB的數(shù)量關(guān)系,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,交矩形的對(duì)角線BD于點(diǎn)E,點(diǎn)F是BC的中點(diǎn),連接EF.

(1)試判斷EF與⊙O的位置關(guān)系,并說(shuō)明理由.

(2)若DC=2,EF=,點(diǎn)P是⊙O上不與E、C重合的任意一點(diǎn),則∠EPC的度數(shù)為 (直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,

1)若∠ABC=60°,∠ACB=40°,求∠BOC的度數(shù);

2)若∠ABC=60°,OB=4,且△ABC的周長(zhǎng)為16,求△ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校對(duì)學(xué)生就“食品安全知識(shí)”進(jìn)行了抽樣調(diào)查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整)。請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計(jì)圖中的值,并補(bǔ)全條形統(tǒng)計(jì)圖。

(2)該校共有學(xué)生900人,估計(jì)該校學(xué)生對(duì)“食品安全知識(shí)”非常了解的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BADBCE均為等腰直角三角形,∠BAD =BCE = 90°,點(diǎn)MAN的中點(diǎn),過(guò)點(diǎn)EAD平行的直線交射線AM于點(diǎn)N。

1)當(dāng)A,BC三點(diǎn)在同一直線上時(shí)(如圖1),求證:AD=NE

2)將圖1中的BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,BE三點(diǎn)在同一直線上時(shí)(如圖2),求證:ACN為等腰直角三角形;

3)將圖1BCE繞點(diǎn)B旋轉(zhuǎn)到圖3位置時(shí),(2)中的結(jié)論是否仍成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案