【答案】
分析:根據(jù)平均數(shù)公式與方差公式即可求解.
解答:解:∵據(jù)x
1,x
2,x
3,x
4,x
5的平均數(shù)是2,
∴
=2,
∵數(shù)據(jù)x
1,x
2,x
3,x
4,x
5的平均數(shù)是2,方差是
,
∴
[(x
1-2)
2+(x
2-2)
2+[(x
3-2)
2+(x
4-2)
2+(x
5-2)
2]=
①;
∴3x
1-2,3x
2-2,3x
3-2,3x
4-2,3x
5-2,的平均數(shù)是
,
=3×
-2=4.
∴
[(3x
1-2-4)
2+(3x
2-2-4)
2+(3x
3-2-4)
2+(3x
4-2-4)
2+(3x
5-2-4)
2]
=
[9(x
1-2)
2+9(x
2-2)
2+9(x
3-2)
2+9(x
4-2)
2+9(x
5-2)
2]
=
×9[(x
1-2)
2+(x
2-2)
2+(x
3-2)
2+(x
4-2)
2+(x
5-2)
2]②
把①代入②得,方差是:
×9=3.
故答案為:4;3.
點評:本題考查了平均數(shù)的計算公式和方差的定義:一般地設(shè)n個數(shù)據(jù),x
1,x
2,…x
n的平均數(shù)為
,則S
2=
[(x
1-
)
2+(x
2-
)
2+…+(x
n-
)
2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.