【題目】在平面直角坐標(biāo)系中,點(diǎn) 的坐標(biāo)為,以 A 為頂點(diǎn)的的兩邊始終與 軸交于 、兩點(diǎn)(在 左面),且.
(1)如圖,連接,當(dāng) 時(shí),試說明:.
(2)過點(diǎn) 作軸,垂足為,當(dāng)時(shí),將沿所在直線翻折,翻折后邊 交 軸于點(diǎn) ,求點(diǎn) 的坐標(biāo).
【答案】(1)見解析;(2)M點(diǎn)坐標(biāo)為(0,3)或M點(diǎn)坐標(biāo)為(0,—6).
【解析】
試題(1)根據(jù)題目中角的度數(shù),求出∠BAO=∠ABC=67.5°,利用等腰三角形的性質(zhì)即可得出結(jié)論;
(2)根據(jù)題意,可知要分兩種情況,即當(dāng)點(diǎn)C在點(diǎn)D右側(cè)時(shí)或當(dāng)點(diǎn)C在點(diǎn)D左側(cè)時(shí),利用勾股定理即可得出M點(diǎn)坐標(biāo).
試題解析:
(1)∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB= 67.5°.
過點(diǎn)A作AE⊥OB于E,則△AEO是等腰直角三角形,∠EAO=45°.
∵AB=AC,AE⊥OB,
∴∠BAE=∠BAC=22.5°.
∴∠BAO=67.5°=∠ABC
∴OA=OB,
(2)設(shè)OM=x.
當(dāng)點(diǎn)C在點(diǎn)D右側(cè)時(shí),連接CM,過點(diǎn)A作AF⊥y軸于點(diǎn)F,
由∠BAM=∠DAF=90°可知:∠BAD=∠MAF;
∵AD=AF=6,∠BDA=∠MFA=90°,
∴△BAD≌△MAF.
∴BD=FM=6—x.
∵AC=AC,∠BAC=∠MAC,
∴△BAC≌△MAC.
∴BC=CM=8—x.
在Rt△COM中,由勾股定理得:OC2+OM2=CM2,即,
解得:x=3,∴M點(diǎn)坐標(biāo)為(0,3).
當(dāng)點(diǎn)C在點(diǎn)D左側(cè)時(shí),連接CM,過點(diǎn)A作AF⊥y軸于點(diǎn)F,
同理,△BAD≌△MAF,∴BD=FM=6+x.
同理,△BAC≌△MAC,∴BC=CM=4+x.
在Rt△COM中,由勾股定理得:OC2+OM2=CM2,即,
解得:x=6,∴M點(diǎn)坐標(biāo)為(0,—6)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校新到一批理、化、生實(shí)驗(yàn)器材需要整理,若實(shí)驗(yàn)管理員李老師一人單獨(dú)整理需要40分鐘完成,現(xiàn)在李老師與工人王師傅共同整理20分鐘后,李老師因事外出,王師傅再單獨(dú)整理了20分鐘才完成任務(wù).
(1)王師傅單獨(dú)整理這批實(shí)驗(yàn)器材需要多少分鐘?
(2)學(xué)校要求王師傅的工作時(shí)間不能超過30分鐘,要完成整理這批器材,李老師至少要工作多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)要求回答問題:
(1)【提出問題】
已知:菱形ABCD的變長(zhǎng)為4,∠ADC=60°,△PEF為等邊三角形,當(dāng)點(diǎn)P與點(diǎn)D重合,點(diǎn)E在對(duì)角線AC上時(shí)(如圖1所示),求AE+AF的值;
(2)【類比探究】
在上面的問題中,如果把點(diǎn)P沿DA方向移動(dòng),使PD=1,其余條件不變(如圖2),你能發(fā)現(xiàn)AE+AF的值是多少?請(qǐng)直接寫出你的結(jié)論;
(3)【拓展遷移】
在原問題中,當(dāng)點(diǎn)P在線段DA的延長(zhǎng)線上,點(diǎn)E在CA的延長(zhǎng)線上時(shí)(如圖3),設(shè)AP=m,則線段AE、AF的長(zhǎng)與m有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿直線BE折疊后得到△GBE,延長(zhǎng)BG交CD于點(diǎn)F,若AB=4,BC=6,則FD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.
(1)求證:△ABC≌△ADE;
(2)求∠FAE的度數(shù);
(3)求證:CD=2BF+DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)先解不等式組 ,然后判斷 是不是此不等式組的一個(gè)整數(shù)解.
(2)化簡(jiǎn)求值:先化簡(jiǎn) ,再從1,2,3中選取一個(gè)適當(dāng)?shù)臄?shù)代入求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】滿足下列條件的△ABC不是直角三角形的是()
A. BC=1,AC=2,AB=
B. BC=1,AC=2,AB=
C. BC:AC:AB=3:4:5
D. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果商從批發(fā)市場(chǎng)用8000元購進(jìn)了大櫻桃和小櫻桃各200千克,大櫻桃的進(jìn)價(jià)比小櫻桃的進(jìn)價(jià)每千克多20元.大櫻桃售價(jià)為每千克40元,小櫻桃售價(jià)為每千克16元.
(1)大櫻桃和小櫻桃的進(jìn)價(jià)分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?
(2)該水果商第二次仍用8000元錢從批發(fā)市場(chǎng)購進(jìn)了大櫻桃和小櫻桃各200千克,進(jìn)價(jià)不變,但在運(yùn)輸過程中小櫻桃損耗了20%.若小櫻桃的售價(jià)不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價(jià)最少應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,D為BC的中點(diǎn),DE⊥AB,垂足為E,過點(diǎn)B作BF∥AC交DE的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:AD⊥CF;
(2)連接AF,試判斷△ACF的形狀,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com