【題目】頂角為36°的等腰三角形稱為黃金三角形,利用黃金三角形求的準(zhǔn)確值.

【答案】

【解析】

根據(jù)黃金三角形的頂角為36°,利用等腰三角形的性質(zhì)求證∠GBC=∠BAC,∠C=C,從而得到△BGC∽△ABC,然后利用相似三角形的性質(zhì)求其底與一腰之比即 ,作出黃金三角形頂角的平分線,解得等腰三角形三線合一的性質(zhì)即可得出sin18°的值

解:如圖所示:做MN垂直平分ABAC于點(diǎn)G,作∠BAC的平分線AD,

∵△ABC是黃金三角形,

∴∠BAC=36°,AB=AC,

AG=BG,∠GBA=BAG=36°,∠ABC=C=72°

∴∠GBC=36°,∠BGC=72°

設(shè)BC=xAB=AC=y,

AG=BG=BC=x

∵∠GBC=∠BAC,∠C=C,

∴△BGC∽△ABC,

,即,

整理,得x2+xy-y2=0,

解得

因?yàn)?/span>x、y均為正數(shù),所以

,

作∠BAC的平分線AD,

則∠BAD=CAD=BAC=18°,ADBC,BD=CD=BC

RtABD中,∠ADB=90°,

sin18°=sinBAD=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1x+4k30

1)求證:無論k取什么實(shí)數(shù)值,該方程總有兩個不相等的實(shí)數(shù)根;

2)當(dāng)一矩形ABCD的對角線長為AC,且矩形兩條邊ABBC恰好是這個方程的兩個根時,求矩形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+ca≠0)經(jīng)過C2,0),D0﹣1)兩點(diǎn),并與直線y=kx交于A、B兩點(diǎn),直線l過點(diǎn)E0,﹣2)且平行于x軸,過A、B兩點(diǎn)分別作直線l的垂線,垂足分別為點(diǎn)M、N

1)求此拋物線的解析式;

2)求證:AO=AM;

3)探究:

當(dāng)k=0時,直線y=kxx軸重合,求出此時的值;

試說明無論k取何值,的值都等于同一個常數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家規(guī)定,中、小學(xué)生每天在校體育活動時間不低于1h.為此,某區(qū)就“你每天在校體育活動時間是多少”的問題隨機(jī)調(diào)查了轄區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖如圖所示,其中A組為t0.5h,B組為0.5ht1h,C組為1ht1.5h,D組為t1.5h.

請根據(jù)上述信息解答下列問題:

(1)本次調(diào)查數(shù)據(jù)的眾數(shù)落在 組內(nèi),中位數(shù)落在 組內(nèi);

(2)該轄區(qū)約有18000名初中學(xué)生,請你估計(jì)其中達(dá)到國家規(guī)定體育活動時間的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O外的一點(diǎn),CB與⊙O相切于點(diǎn)B,AC交⊙O于點(diǎn)D,點(diǎn)E上的一點(diǎn)(不與點(diǎn)A,B,D重合),若∠C48°,則∠AED的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A、B的坐標(biāo)分別為(0,2)、(1,0),頂點(diǎn)C在函數(shù)y=x2+bx-1的圖象上,將正方形ABCD沿x軸正方向平移后得到正方形A′B′C′D′,點(diǎn)D的對應(yīng)點(diǎn)D′落在拋物線上,則點(diǎn)D與其對應(yīng)點(diǎn)D′之間的距離為 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點(diǎn),AFDE交于點(diǎn)M,OBD的中點(diǎn),則下列結(jié)論:①∠AME=90°;②∠BAF=EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是(

A. ①③④B. ②④⑤C. ①③⑤D. ①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段與點(diǎn),若在線段上存在點(diǎn),滿足,則稱點(diǎn)為線段限距點(diǎn)”.

1)如圖,在平面直角坐標(biāo)系中,若點(diǎn).

①在中,是線段限距點(diǎn)的是 ;

②點(diǎn)是直線上一點(diǎn),若點(diǎn)是線段限距點(diǎn),請求出點(diǎn)橫坐標(biāo)的取值范圍.

2)在平面直角坐標(biāo)系中,點(diǎn),直線軸交于點(diǎn),與軸交于點(diǎn). 上存在線段限距點(diǎn),請求出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路上有A、B兩地,甲、乙兩車均從A地勻速駛向B地,甲車比乙車早出發(fā)2小時,出發(fā)后,甲車出現(xiàn)了故障停下來維修,半小時后繼續(xù)以原速向B地行駛.當(dāng)乙車到達(dá)B地后立刻提速50%返回,在返回途中第二次與甲車相遇.下圖表示甲乙兩車之間的距離y(千米)與甲車行駛的時間x(小時)之間的函數(shù)關(guān)系.則當(dāng)乙車第二次與甲車相遇時,甲車距離B_____千米.

查看答案和解析>>

同步練習(xí)冊答案