【題目】如圖,線段AB=4,C為線段AB上的一個(gè)動(dòng)點(diǎn),以AC、BC為邊作等邊△ACD和等邊△BCE,⊙O外接于△CDE,則⊙O半徑的最小值為( 。
A. 4 B. C. D. 2
【答案】B
【解析】
分別作∠A與∠B角平分線,交點(diǎn)為P.由三線合一可知AP與BP為CD、CE垂直平分線;再由垂徑定理可知圓心O在CD、CE垂直平分線上,則交點(diǎn)P與圓心O重合,即圓心O是一個(gè)定點(diǎn);連OC,若半徑OC最短,則OC⊥AB,由△AOB為底邊4,底角30°的等腰三角形,可求得OC=.
如圖,分別作∠A與∠B角平分線,交點(diǎn)為P,
∵△ACD和△BCE都是等邊三角形,
∴AP與BP為CD、CE垂直平分線,
又∵圓心O在CD、CE垂直平分線上,則交點(diǎn)P與圓心O重合,即圓心O是一個(gè)定點(diǎn);
連接OC,
若半徑OC最短,則OC⊥AB,
又∵∠OAC=∠OBC=30°,AB=4,
∴OA=OB,
∴AC=BC=2,
∴在直角△AOC中,OC=ACtan∠OAC=2×tan30°=,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形 ABOC 的頂點(diǎn) B(2,1), 則頂點(diǎn) C 的坐標(biāo) 為 _____ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,點(diǎn)從點(diǎn)出發(fā)以的速度沿向點(diǎn)勻速移動(dòng),點(diǎn)從點(diǎn)出發(fā)以的速度沿向點(diǎn)勻速移動(dòng),點(diǎn)從點(diǎn)出發(fā)以的速度沿向點(diǎn)勻速移動(dòng).點(diǎn)同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),其他兩個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)移動(dòng)時(shí)間為.
(1)如圖①,
①當(dāng)為何值時(shí),點(diǎn)為頂點(diǎn)的三角形與全等?并求出相應(yīng)的的值;
②連接交于點(diǎn),當(dāng)時(shí),求出的值;
(2)如圖②,連接交于點(diǎn).當(dāng)時(shí),證明:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林在某商店購(gòu)買商品A、B共三次,只有一次購(gòu)買時(shí),商品A、B同時(shí)打折(折扣相同),其余兩次均按標(biāo)價(jià)購(gòu)買.三次購(gòu)買商品A、B的數(shù)量和費(fèi)用如下表:
購(gòu)買商品A的數(shù)量/個(gè) | 購(gòu)買商品B的數(shù)量/個(gè) | 購(gòu)買總費(fèi)用/元 | |
第一次購(gòu)物 | 6 | 5 | 1140 |
第二次購(gòu)物 | 3 | 7 | 1110 |
第三次購(gòu)物 | 9 | 8 | 1062 |
(1)小林以折扣價(jià)購(gòu)買商品A、B是第 次購(gòu)物;
(2)求出商品A、B的標(biāo)價(jià);
(3)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛摩托車同時(shí)從相距20km的A,B兩地出發(fā),相向而行.圖中l 1,l 2分別表示甲、乙兩輛摩托車到A地的距離s(km)與行駛時(shí)間t(h)的函數(shù)關(guān)系.則下列說法錯(cuò)誤的是( )
A.乙摩托車的速度較快B.經(jīng)過0.3小時(shí)甲摩托車行駛到A,B兩地的中點(diǎn)
C.當(dāng)乙摩托車到達(dá)A地時(shí),甲摩托車距離A地kmD.經(jīng)過小時(shí)兩摩托車相遇
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,AB//DC,AB=DC,且AB=6cm,BC=8cm,對(duì)角線AC =10cm,
(1)求證:四邊形ABCD是矩形;
(2)如圖(2),若動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在CA邊上以每秒5cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),在BC邊上以每秒4cm的速度向點(diǎn)C勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0≤t<2),連接BQ、AP,若AP⊥BQ,求t的值;
(3)如圖(3),若點(diǎn)Q在對(duì)角線AC上,CQ=4cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),以每秒1cm的速度沿BC運(yùn)動(dòng)至點(diǎn)C止.設(shè)點(diǎn)P運(yùn)動(dòng)了t秒,請(qǐng)你探索:從運(yùn)動(dòng)開始,經(jīng)過多少時(shí)間,以點(diǎn)Q、P、C為頂點(diǎn)的三角形是等腰三角形?請(qǐng)求出所有可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為緩解交通擁堵,遵義市某區(qū)擬計(jì)劃修建一地下通道,該通道一部分的截面如圖所示(圖中地面AD與通道BC平行),通道水平寬度BC為8米,∠BCD=135°,通道斜面CD 的長(zhǎng)為6米,通道斜面AB的坡度i=1:
(1)求通道斜面AB的長(zhǎng)為多少米;
(2)為增加市民行走的舒適度,擬將設(shè)計(jì)圖中的通道斜面CD的坡度變緩,修改后的通道斜面DE的坡角為30°,求此時(shí)BE的長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=,tanB=.半徑為2的⊙C, 分別交AC、BC于點(diǎn)D、E,得到 .
(1)求證:AB為⊙C的切線;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=k1x+b(k1≠0)的圖象分別與x軸,y軸相交于點(diǎn)A,B,與反比例函數(shù)y2= 的圖象相交于點(diǎn)C(﹣4,﹣2),D(2,4).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)當(dāng)x為何值時(shí),y1>0;
(3)當(dāng)x為何值時(shí),y1<y2,請(qǐng)直接寫出x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com