【題目】△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),根據(jù)勾股定理,則a2+b2=c2,若△ABC不是直角三角形,如圖(2)和圖(3),請你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.

【答案】見解析

【解析】

解:若△ABC為銳角三角形,則有a2b2c2,若△ABC為鈍角三角形,∠C為鈍角,則有a2b2c2

證明:(1)當△ABC為銳角三角形時,過點AAD⊥CB,垂足為D,設CDx,則有DBax

根據(jù)勾股定理,得b2x2c2-(ax2,即b2x2c2a22axx2

∴a2b2c22ax∵a0,x0,∴2ax0

∴a2b2c2

2)當△ABC為鈍角三角形時,過BBD⊥AC,交AC的延長線于點D,設CDx,則BD2a2x2.根據(jù)勾股定理,得(bx2+(a2x2)=c2,∴a2b22bxc2

∵b0x0,∴2bx0,∴a2b2c2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(4,0)、C(0,3)三點.

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最。咳舸嬖,求出四邊形PAOC周長的最小值;若不存在,請說明理由.
(3)如圖②,點Q是線段OB上一動點,連接BC,在線段BC上是否存在這樣的點M,使△CQM為等腰三角形且△BQM為直角三角形?若存在,求點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】……個數(shù)中,不能表示成兩個平方數(shù)差的數(shù)有________個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E是BC邊上一點,且BE:EC=2:1,AE與BD交于點F,則△AFD與四邊形DFEC的面積之比是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在RtABC中,ACB=90°,現(xiàn)按如下步驟作圖:

分別以A,C為圓心,a為半徑(a>AC)作弧,兩弧分別交于M,N兩點;

過M,N兩點作直線MN交AB于點D,交AC于點E;

ADE繞點E順時針旋轉(zhuǎn)180°,設點D的像為點F

(1)請在圖中直線標出點F并連接CF;

(2)求證:四邊形BCFD是平行四邊形;

(3)當B為多少度時,四邊形BCFD是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2 , 后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
(3)求彈珠離開軌道時的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在5×5的方格紙中,每一個小正方形的邊長都為1.

(1)BCD是不是直角?請說明理由;

(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解一元一次不等式或不等式組

13(x+2)-8≥1-2(x-1)

2

3求不等式組的非負整數(shù)解

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣4,2)、B(0,4)、C(0,2),

(1)畫出△ABC關(guān)于點C成中心對稱的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)△A1B1C和△A2B2C2關(guān)于某一點成中心對稱,則對稱中心的坐標為

查看答案和解析>>

同步練習冊答案