【題目】如圖,正方形OABC和正方形CDEF在平面直角坐標(biāo)系中,點(diǎn)O,C,F(xiàn)在y軸上,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)M為OC的中點(diǎn),拋物線y=ax2+b經(jīng)過M,B,E三點(diǎn),則 的值為 .
【答案】1+
【解析】解:設(shè)正方形OABC的邊長為m,和正方形CDEF的邊長為n.
∵點(diǎn)M為OC的中點(diǎn),
∴點(diǎn)M為(0, )、點(diǎn)B為(m,m)和點(diǎn)E為(n,m+n),
∵拋物線y=ax2+b經(jīng)過M,B,E三點(diǎn),
∴m=am2+ ,
解得:a= ,
∴拋物線y= x2+ ,
把點(diǎn)E(n,m+n)代入拋物線得
m+n= n2+ ,
解得:n=m+ m或n=m﹣ m(不合題意,舍去),
即CB=m,EF=m+ m,
∴ =1+ .
設(shè)正方形OABC的邊長為m,和正方形CDEF的邊長為n.又點(diǎn)M為OC的中點(diǎn),從而得出M,B,E三點(diǎn)的坐標(biāo),根據(jù)待定系數(shù)法求出拋物線的解析式,再把E點(diǎn)的坐標(biāo)代入就可以得出用含m的式子表示n,從而表示出CB.EF的長度,進(jìn)而得到其比值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩組數(shù)據(jù):98,99,99,100和98.5,99,99,99.5,則關(guān)于以下統(tǒng)計(jì)量說法不正確的是( )
A. 平均數(shù)相等
B. 中位數(shù)相等
C. 眾數(shù)相等
D. 方差相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)某調(diào)查小組采用簡(jiǎn)單隨機(jī)抽樣方法,對(duì)某市部分中小學(xué)生一天中陽光體育運(yùn)動(dòng)時(shí)間進(jìn)行了抽樣調(diào)查,并把所得數(shù)據(jù)整理后繪制成如下的統(tǒng)計(jì)圖:
(1)該調(diào)查小組抽取的樣本容量是多少?
(2)求樣本學(xué)生中陽光體育運(yùn)動(dòng)時(shí)間為1.5小時(shí)的人數(shù),并補(bǔ)全占頻數(shù)分布直方圖;
(3)請(qǐng)估計(jì)該市中小學(xué)生一天中陽光體育運(yùn)動(dòng)的平均時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校射擊隊(duì)從甲、乙、丙、丁四人中選拔一人參加市運(yùn)動(dòng)會(huì)射擊比賽,在選拔比賽中,每人射擊10次,他們10次成績(jī)的平均數(shù)及方差如下表所示:
甲 | 乙 | 丙 | 丁 | |
平均數(shù)/環(huán) | 9.5 | 9.5 | 9.6 | 9.6 |
方差/環(huán)2 | 5.1 | 4.7 | 4.5 | 5.1 |
請(qǐng)你根據(jù)表中數(shù)據(jù)選一人參加比賽,最合適的人選是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線點(diǎn)在直線上,點(diǎn)在直線上,點(diǎn)在直線之間,.
(1)如圖1,若,求的度數(shù);
(2)如圖2,平分平分,比較的大。
(3)如圖3,點(diǎn)是線段上一點(diǎn),平分平分,探究和的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB:交y軸于點(diǎn)A(0,1),交x軸于點(diǎn)B.直線x=1交AB于點(diǎn)D,交x軸于點(diǎn)E,P是直線x=1上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)P(1,n).
(1)求直線AB的解析式和點(diǎn)B的坐標(biāo);
(2)求△ABP的面積(用含n的代數(shù)式表示);
(3)當(dāng)S△ABP=2時(shí),以PB為邊在第一象限作等腰直角三角形BPC,求出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織了主題為“讓勤儉節(jié)約成為時(shí)尚”的電子小組作品征集活動(dòng),現(xiàn)從中隨機(jī)抽取部分作品,按A,B,C,D四個(gè)等級(jí)進(jìn)行評(píng)價(jià),并根據(jù)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)求抽取了多少份作品;
(2)此次抽取的作品中等級(jí)為B的作品有 ,并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共征集到800份作品,請(qǐng)估計(jì)等級(jí)為A的作品約有多少份.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理(解析)
提出問題:如圖1,在四邊形ABCD中,P是AD邊上任意一點(diǎn),△PBC與△ABC和△DBC的面積之間有什么關(guān)系?探究發(fā)現(xiàn):為了解決這個(gè)問題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:
當(dāng)AP=AD時(shí)(如圖2):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD,
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等
∴S△CDP=S△CDA,
∴S△PBC=S四邊形ABCD﹣S△ABP﹣S△CDP=S四邊形ABCD﹣S△ABD﹣S△CDA,
=S四邊形ABCD﹣(S四邊形ABCD﹣S△DBC)﹣(S四邊形ABCD﹣S△ABC)=S△DBC+S△ABC.
(1)當(dāng)AP=AD時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系式并證明;
(2)當(dāng)AP=AD時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為: ;
(3)一般地,當(dāng)AP=AD(n表示正整數(shù))時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系為: ;
(4)當(dāng)AP=AD(0≤≤1)時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠C=90°,∠A=60°,AC=3cm,AB=6m,點(diǎn)P在線段AC上以1cm/s的速度由點(diǎn)C向點(diǎn)A運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段AB上以2cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)t=1時(shí),判斷△APQ的形狀,并說明理由;
(2)當(dāng)t為何值時(shí),△APQ與△CQP全等?請(qǐng)寫出證明過程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com