【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動(dòng),第二層有兩枚固定不動(dòng)的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動(dòng),甲、乙移入方格后,四枚黑色方塊構(gòu)成各種拼圖.

(1)若乙固定在E處,移動(dòng)甲后黑色方塊構(gòu)成的拼圖是軸對(duì)稱圖形的概率是
(2)若甲、乙均可在本層移動(dòng).
①用樹形圖或列表法求出黑色方塊所構(gòu)拼圖是軸對(duì)稱圖形的概率.
②黑色方塊所構(gòu)拼圖是中心對(duì)稱圖形的概率是

【答案】
(1)
(2)解:①由樹狀圖可知,黑色方塊所構(gòu)拼圖是軸對(duì)稱圖形的概率=

②黑色方塊所構(gòu)拼圖中是中心對(duì)稱圖形有兩種情形,①甲在B處,乙在F處,②甲在C處,乙在E處,
所以黑色方塊所構(gòu)拼圖是中心對(duì)稱圖形的概率是
故答案為
【解析】解:(1)若乙固定在E處,移動(dòng)甲后黑色方塊構(gòu)成的拼圖一共有3種可能,其中有兩種情形是軸對(duì)稱圖形,所以若乙固定在E處,移動(dòng)甲后黑色方塊構(gòu)成的拼圖是軸對(duì)稱圖形的概率是
故答案為
2)①由樹狀圖可知,黑色方塊所構(gòu)拼圖是軸對(duì)稱圖形的概率=

②黑色方塊所構(gòu)拼圖中是中心對(duì)稱圖形有兩種情形,①甲在B處,乙在F處,②甲在C處,乙在E處,
所以黑色方塊所構(gòu)拼圖是中心對(duì)稱圖形的概率是
故答案為
(1)若乙固定在E處,求出移動(dòng)甲后黑色方塊構(gòu)成的拼圖一共有多少種可能,其中是軸對(duì)稱圖形的有幾種可能,由此即可解決問題.(2)①畫出樹狀圖即可解決問題.
②不可能出現(xiàn)中心對(duì)稱圖形,所以概率為0.本題考查軸對(duì)稱圖形、中心對(duì)稱圖形、樹狀圖、概率公式等知識(shí),解題的關(guān)鍵是幾種基本概念,學(xué)會(huì)畫樹狀圖解決概率問題,屬于中考?碱}型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計(jì)劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學(xué)生的選修情況,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問題:

(1)本次調(diào)查的學(xué)生共有人,在扇形統(tǒng)計(jì)圖中,m的值是;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動(dòng),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以直角三角形a、b、c為邊,向外作等邊三角形,半圓,等腰直角三角形和正方形,上述四種情況的面積關(guān)系滿足S1+S2=S3圖形個(gè)數(shù)有(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC與BD交于點(diǎn)O,若增加一個(gè)條件,使ABCD成為菱形,下列給出的條件不正確的是(

A.AB=AD
B.AC⊥BD
C.AC=BD
D.∠BAC=∠DAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某新農(nóng)村樂園設(shè)置了一個(gè)秋千場所,如圖所,秋千拉繩OB的長為3m,靜止時(shí),踏板到地面距離BD的長為0.6m(踏板厚度忽略不計(jì)).為安全起見,樂園管理處規(guī)定:兒童的“安全高度”為hm,成人的“安全高度”為2m(計(jì)算結(jié)果精確到0.1m)

(1)當(dāng)擺繩OA與OB成45°夾角時(shí),恰為兒童的安全高度,則h= 1.5 m
(2)某成人在玩秋千時(shí),擺繩OC與OB的最大夾角為55°,問此人是否安全?(參考數(shù)據(jù): ≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC=120°,AB=AC=6.P是底邊BC上的一個(gè)動(dòng)點(diǎn)(P與B、C不重合),以P為圓心,PB為半徑的⊙P與射線BA交于點(diǎn)D,射線PD交射線CA于點(diǎn)E.

(1)若點(diǎn)E在線段CA的延長線上,設(shè)BP=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)當(dāng)BP=2 時(shí),試說明射線CA與⊙P是否相切.
(3)連接PA,若SAPE= SABC , 求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=10cm;BC=6cm,點(diǎn)D為AB的中點(diǎn).

(1)如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).

若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,BPD與CQP是否全等,請(qǐng)說明理由;

若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使BPD與CQP全等?

(2)若點(diǎn)Q以中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B出發(fā)都逆時(shí)針沿ABC三邊運(yùn)動(dòng),直接寫出經(jīng)過多少秒后,點(diǎn)P與點(diǎn)Q第一次在ABC的那一條邊上相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B、F、C、E在一條直線上,AB∥ED,AC∥FD,那么添加下列一個(gè)條件后,仍無法判定△ABC≌△DEF的是(

A.AB=DE
B.AC=DF
C.∠A=∠D
D.BF=EC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c的圖象與y軸交于點(diǎn)C(0,﹣6),與x軸的一個(gè)交點(diǎn)坐標(biāo)是A(﹣2,0).

(1)求二次函數(shù)的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)將二次函數(shù)的圖象沿x軸向左平移 個(gè)單位長度,當(dāng) y<0時(shí),求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案