【題目】拋物線y=ax2+bx+c交x軸于A、B兩點,交y軸于點C,已知拋物線的對稱軸為x=1,B(3,0),C(0,-3),

(1)求二次函數(shù)y=ax2+bx+c的解析式;

(2)在拋物線對稱軸上是否存在一點P,使點P到B、C兩點距離之差最大?若存在,求出P點坐標;若不存在,請說明理由;

(3)平行于x軸的一條直線交拋物線于M,N兩點,若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.

【答案】(1)y=x2-2x-3;(2)點P的坐標(1,-6).(3)

【解析】試題分析:(1)將B、C的坐標代入拋物線的解析式中,聯(lián)立拋物線的對稱軸方程,即可求得該拋物線的解析式.(2)由于A、B關于拋物線的對稱軸對稱,若PB、C的距離差最大,那么P點必為直線AC與拋物線對稱軸的交點,可先求出直線AC的解析式,聯(lián)立拋物線對稱軸方程,即可得到點P的坐標.(3) 根據(jù)拋物線和圓的對稱性知圓心必在拋物線的對稱軸上,由于該圓與x軸相切可用圓的半徑表示出M、N的坐標,將其入拋物線的解析式中,即可求出圓的半徑;(需注意的是圓心可能在軸上方,也可能在軸下方,需要分類討論)

試題解析:

(1)將C(0,-3)代入y=ax2+bx+c,得 c=3.

將c=3,B(3,0)代入y=ax2+bx+c,得 .∵是對稱軸,∴

將(2)代入(1)得:, .所以,二次函數(shù)得解析式是

(2)AC與對稱軸的交點P即為到B、C的距離之差最大的點.

∵C點的坐標為(0,-3),A點的坐標為(-1,0),

∴ 直線AC的解析式是,又對稱軸為,∴ 點P的坐標(1,-6).

(3)設,所求圓的半徑為r,則 ,

∵ 對稱軸為, ∴.由(1)、(2)得:

代入解析式,得 ,

整理得: .由于時,,

解得,(舍去),

時,,解得, , (舍去).

所以圓的半徑是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算
(1)(2015﹣π)0+| ﹣2|+ +( 1;
(2)先化簡,再求值:(a﹣ )(a+ )﹣a(a﹣6),其中a= +

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段ABCD的公共部分BD ,線段ABCD的中點E、F之間的距離是25cm,試求ABCD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(x5)(x20)x2mxn,則m____n____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,大海中某島C的周圍25km范圍內有暗礁.一艘海輪向正東方向航行,在A處望見C在北偏東60°處,前進20km后到達點B,測得C在北偏東45°處.如果該海輪繼續(xù)向正東方向航行,有無觸礁危險?請說明理由.(參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程2x﹣4=0的解也是關于x的方程x2+mx+2=0的一個解,則m的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】太陽半徑約為696000km,將696000用科學記數(shù)法表示為( )
A.696×103
B.69.6×104
C.6.96×105
D.0.696×106

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程x22x+m10有兩個實數(shù)根,則m的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC的頂點A、B、C的坐標分別是(﹣3,0)、(﹣1,2)、(﹣2,4).

(1)畫出△ABC關于y軸對稱的△A1B1C1;

(2)將△ABC繞原點O按逆時針方向旋轉90°后得到△A2B2C2,畫出△A2B2C2,并寫出點A2、B2、C2的坐標;

(3)求出(2)中C點旋轉到C2點所經(jīng)過的路徑長(記過保留根號和π).

查看答案和解析>>

同步練習冊答案