如圖,AB是⊙O的直徑,弦(非直徑)CD⊥AB,P是⊙O上不同于C、D的任一點.
(1)當(dāng)點P在劣弧CD上運動時,∠APC與∠APD的關(guān)系如何?請證明你的結(jié)論;
(2)當(dāng)點P在優(yōu)弧CD上運動時,∠APC與∠APD的關(guān)系如何?請證明你的結(jié)論(不要求討論P(yáng)點與A點重合的情形)
∵弦CD⊥AB,AB是直徑,
∴弧AC=弧AD;(2分)
∴∠APC=∠APD,(3分)
(2)∠APC+∠APD=180°,
由垂徑定理可知
AC
=
AD
,
∴∠APD=∠ADC,
由圓內(nèi)接四邊形的性質(zhì)可知∠APC+∠ADC=180°,
∴∠APC+∠APD=180°(如圖中虛線所示).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖1,在正方形ABCD中,O為正方形的中心,∠MON繞著O點自由的轉(zhuǎn)動,角的兩邊與正方形的邊BC、CD交于E、F.若∠MON=90°,正方形的面積等于S.求四邊形OECF的面積.(用S表示)
下面給出一種求解的思路,你可以按這一思路求解,也可以選擇另外的方法去求.
解:連接OB、OC.∵O為正方形的中心,∴∠BOC=
360
4
=90°,
∵∠MON=90°∴∠FOC+∠EOC=∠EOB+∠EOC=90°.∴∠FOC=∠EOB
(下面請你完成余下的解題過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),O是△ABC的中心,∠MON=120°,正三角形ABC的面積等于S.求四邊形OECF的面積.(用S表示)
(3)若將(1)中的“正方形ABCD”改為“正n邊形ABCD…X”,正n邊形的面積等于S.請你作出猜想:當(dāng)∠MON=______°時,四邊形OECF的面積=______(用S表示,并直接寫出答案,不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,⊙O的弦AB、AC的夾角為50°,MN分別為弧AB和弧AC的中點,OM、ON分別交AB、AC于點E、F,則∠MON的度數(shù)為( 。
A.110°B.120°C.130°D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓內(nèi)兩條弦互相垂直,其中一條AB被分成3和4兩段,另一條CD被分成2和6兩段,求此圓的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O中,弦AB,CD相交于P,且四邊形OEPF是正方形,連接OP.若⊙O的半徑為5cm,OP=3
2
cm
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將半徑為8的⊙O沿AB折疊,弧AB恰好經(jīng)過與AB垂直的半徑OC的中點D,則折痕AB長為(  )
A.2
15
B.4
15
C.8D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在以O(shè)為圓心的兩個同心圓中,大圓的弦AB與小圓相切于點C,若AB的長為8cm,則圖中陰影部分的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,圓弧形橋拱的跨度AB=16米,拱高CD=4米,則拱橋的半徑為______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PM,PN是兩條夾角為30°的筆直的公路,在距離點P為8千米的點O處,有一個小靈通信號發(fā)射中心,在它的周圍5千米(包括5千米)范圍內(nèi)小靈通才可以正常使用.小王早上8:00鐘從點P出發(fā),乘坐速度為每小時30千米的汽車向PN方向行進(jìn),若小王身上帶的通訊工具只有小靈通,現(xiàn)要打電話給小王,問在什么時刻開始撥打為好?通話時間最多可以是幾分鐘?(結(jié)果精確到分)

查看答案和解析>>

同步練習(xí)冊答案