【題目】如圖,P是等腰直角△ABC外一點(diǎn),把BP繞直角頂點(diǎn)BB順時(shí)針旋轉(zhuǎn)900到BP/,已知∠AP/B=1350,P/A:P/C=1:3,則PB:P/A的值為________.
【答案】1:2
【解析】
如圖,連接AP,構(gòu)建全等三角形:△ABP≌△CBP′(SAS),由該全等三角形的對(duì)應(yīng)邊相等得到AP=P′C;如圖,連接PP′,結(jié)合已知條件可以推知△APP′是直角三角形,所以由勾股定理來(lái)求相關(guān)線段的長(zhǎng)度即可.
如圖,連接AP,
∵BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到BP′,
∴BP=BP′,∠ABP+∠ABP′=90°,
又∵△ABC是等腰直角三角形,
∴AB=BC,∠CBP′+∠ABP′=90°,
∴∠ABP=∠CBP′,
在△ABP和△CBP′中,
∵,
∴△ABP≌△CBP′(SAS),
∴AP=P′C,
∵P′A:P′C=1:3,
∴AP=3P′A,
連接PP′,則△PBP′是等腰直角三角形,
∴∠BP′P=45°,PP′=PB,
∵∠AP′B=135°,
∴∠AP′P=135°45°=90°,
∴△APP′是直角三角形,
設(shè)P′A=x,則AP=3x,
根據(jù)勾股定理,PP′===2x,
∴PP′=PB=2x,
解得PB=2x,
∴P′A:PB=x:2x=1:2.
故答案是:1:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點(diǎn),P為弧BC上一動(dòng)點(diǎn)(不與C,B重合),則2PD+PB的最小值為( 。
A. B. C. 10 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點(diǎn)A、D為圓心,以大于的長(zhǎng)為半徑在AD的兩側(cè)作弧,交于兩點(diǎn)M、N;第二步,連結(jié)MN,分別交AB、AC于點(diǎn)E、F;第三步,連結(jié)DE、DF..若BD=6,AF=4,CD=3,則BE的長(zhǎng)是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.
(1)求證:BE=CE;
(2)如圖2,若BE的延長(zhǎng)線交AC于點(diǎn)F,且BF⊥AC,∠BAC=45°,原題設(shè)其他條件不變.求證:AB=BF+EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為了吸引顧客,設(shè)計(jì)了一種促銷活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場(chǎng)同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回),商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價(jià)格的購(gòu)物券,可以重新在本商場(chǎng)消費(fèi),某顧客剛好消費(fèi)200元.
(1)該顧客至少可得到_____元購(gòu)物券,至多可得到_______元購(gòu)物券;
(2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長(zhǎng);
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,3),B(4,1),C(4,4).
(1)請(qǐng)按要求畫圖:①畫出△ABC向左平移5個(gè)單位長(zhǎng)度后得到的△A1B1C1;
②畫出△ABC繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2.
(2)請(qǐng)寫出直線B1C1與直線B2C2的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀下列材料:
問(wèn)題:現(xiàn)有5個(gè)邊長(zhǎng)為1的正方形,排列形式如圖①,請(qǐng)把它們分割后拼接成一個(gè)新的正方形,要求:畫出分割線并在正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長(zhǎng)均為1)中用實(shí)線畫出拼接成的新正方形.小東同學(xué)的做法是:設(shè)新正方形的邊長(zhǎng)為x(x>0),依題意,割補(bǔ)前后圖形的面積相等,有x2=5,解得,由此可知新正方形的邊長(zhǎng)等于兩個(gè)小正方形組成的矩形對(duì)角線的長(zhǎng),于是,畫出如圖②所示的分割線,拼出如圖③所示的新正方形.
請(qǐng)你參考小東同學(xué)的做法,解決如下問(wèn)題:
現(xiàn)有10個(gè)邊長(zhǎng)為1的正方形,排列形式如圖④,請(qǐng)把它們分割后拼接成一個(gè)新的正方形,要求:在圖④中畫出分割線,并在圖⑤的正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長(zhǎng)均為1)中用實(shí)線畫出拼接成的新正方形.(說(shuō)明:直接畫出圖形,不要求寫分析過(guò)程.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在規(guī)格為8×8的邊長(zhǎng)為1個(gè)單位的正方形網(wǎng)格中(每個(gè)小正方形的邊長(zhǎng)為1),△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,且直線m、n互相垂直.
(1)畫出△ABC關(guān)于直線n的對(duì)稱圖形△A′B′C′;
(2)直線m上存在一點(diǎn)P,使△APB的周長(zhǎng)最。
①在直線m上作出該點(diǎn)P;(保留畫圖痕跡)
②△APB的周長(zhǎng)的最小值為 .(直接寫出結(jié)果)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com