【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,ECD上一點,BEACF,連接DF.

(1)證明:∠BAC=∠DAC.

(2)若∠BEC=∠ABE,試證明四邊形ABCD是菱形.

【答案】證明見解析

【解析】

試題由AB=AD,CB=CD結(jié)合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再證△ABF≌△ADF即可得到∠AFB=∠AFD,結(jié)合∠AFB=∠CFE即可得到∠AFD=∠CFE;

(2)AB∥CD可得∠DCA=∠BAC結(jié)合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD結(jié)合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四邊形ABCD是菱形.

試題解析

(1)△ABC△ADC中,
∵AB=AD,CB=CD,AC=AC,
∴△ABC≌△ADC,
∴∠BAC=∠DAC,
△ABF△ADF中,
∵AB=AD,∠BAC=∠DAC,AF=AF,
∴△ABF≌△ADF,
∴∠AFB=∠AFD.
(2)證明:∵AB∥CD,
∴∠BAC=∠ACD,
∵∠BAC=∠DAC,
∴∠ACD=∠CAD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=CB=CD=AD,
四邊形ABCD是菱形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D為等邊三角形ABC內(nèi)的一點,DA5,DB4DC3,將線段AD以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段AD′,下列結(jié)論:①點D與點D′的距離為5;②∠ADC150°;③△ACD′可以由△ABD繞點A逆時針旋轉(zhuǎn)60°得到;④點DCD′的距離為3;⑤S四邊形ADCD6.其中正確的有(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的關(guān)系圖象,其中M為曲線部分的最低點,則△ABC的面積是( )

A. 10B. 12C. 20D. 24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】規(guī)定:如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根,且其中一個根是另一個根的2倍,則稱這樣的方程為倍根方程.現(xiàn)有下列結(jié)論:方程x2+2x﹣8=0是倍根方程;

若關(guān)于x的方程x2+ax+2=0是倍根方程,則a=±3;

若關(guān)于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+cx軸的公共點的坐標是(2,0)和(4,0);

若點(m,n)在反比例函數(shù)y=的圖象上,則關(guān)于x的方程mx2+5x+n=0是倍根方程.

上述結(jié)論中正確的有(

A. ①② B. ③④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等邊ABC的邊長為4cm,點P,Q分別從B,C兩點同時出發(fā),其中點P沿BC向終點C運動,速度為1cm/s;

點Q沿CA,AB向終點B運動,速度為2cm/s,設(shè)它們運動的時間為x(s),

(1)如圖(1),當x為何值時,PQAB;

(2)如圖(2),若PQAC,求x;

(3)如圖(3),當點Q在AB上運動時,PQ與ABC的高AD交于點O,OQ與OP是否總是相等?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A.F、C.D在同一直線上,點B和點E分別在直線AD的兩側(cè),且

AB=DE,∠A=∠D,AF=DC.

(1)求證:四邊形BCEF是平行四邊形,

(2)若∠ABC=90°,AB=4,BC=3,當AF為何值時,四邊形BCEF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=1,下列結(jié)論:①ab<0;a+b+c<0;b2>4ac;3a+c<0.其中正確的是( 。

A. ①④ B. ②③④ C. ①②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定在網(wǎng)格內(nèi)的某點進行一定條件操作到達目標點:H代表所有的水平移動,H1代表向右水平移動1個單位長度,H-1代表向左平移1個單位長度;S代表上下移動,S1代表向上移動1個單位長度,S-1代表向下移動1個單位長度,表示點P在網(wǎng)格內(nèi)先一次性水平移動,在此基礎(chǔ)上再一次性上下移動;表示點P在網(wǎng)格內(nèi)先一次性上下移動,在此基礎(chǔ)上再一次性水平移動.

1)如圖,在網(wǎng)格中標出移動后所到達的目標點

2)如圖,在網(wǎng)格中的點B到達目標點A,寫出點B的移動方法________________

3)如圖,在網(wǎng)格內(nèi)有格點線段AC,現(xiàn)需要由點A出發(fā),到達目標點D,使得A、C、D三點構(gòu)成的格點三角形是等腰直角三角形,在圖中標出所有符合條件的點D的位置并寫出點A的移動方法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩地間的直線公路長為千米.一輛轎車和一輛貨車分別沿該公路從甲、乙兩地以各自的速度勻速相向而行,貨車比轎車早出發(fā)小時,途中轎車出現(xiàn)了故障,停下維修,貨車仍繼續(xù)行駛.小時后轎車故障被排除,此時接到通知,轎車立刻掉頭按原路原速返回甲地(接到通知及掉頭時間不計).最后兩車同時到達甲地,已知兩車距各自出發(fā)地的距離(千米)與轎車所用的時間(小時)的關(guān)系如圖所示,請結(jié)合圖象解答下列問題:

1)貨車的速度是_______千米/小時;轎車的速度是_______千米/小時;值為_______

2)求轎車距其出發(fā)地的距離(千米)與所用時間(小時)之間的函數(shù)關(guān)系式并寫出自變量的取值范圍;

3)請直接寫出貨車出發(fā)多長時間兩車相距千米.

查看答案和解析>>

同步練習冊答案