【題目】如圖,正方形ABCD中,G是BC中點,DE⊥AG于E,BF⊥AG于F,GN∥DE,M是BC延長線上一點。

(1)求證:△ABF≌△DAE

(2)尺規(guī)作圖:作∠DCM的平分線,交GN于點H(保留作圖痕跡,不寫作法和證明),試證明GH=AG。

【答案】1)證明見解析;

2)作圖見解析,證明見解析.

【解析】解:∵ 四邊形ABCD是正方形

AB=BC=CD=DA

DAB=ABC=90°

DAE+GAB=90°

DEAG BFAG

AED=BFA=90°

DAE +ADE=90°

GAB =ADE

ABFDAE

ABFDAE

2)作圖略

方法1:作HIBM于點I

GNDE

AGH=AED=90°

AGB+HGI=90°

HIBM

GHI+HGI=90°

AGB =GHI

GBC中點

tanAGB=

tanGHI= tanAGB=

GI=2HI

CH平分∠DCM

HCI=

CI=HI

CI=CG=BG=HI

ABGGIH

ABGGIH

AG=GH

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一個多邊形的內(nèi)角和是外角和的2倍,此多邊形是________邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)操作發(fā)現(xiàn):

如圖①'在正方形ABCD中,過A點有直線AP,點B關(guān)于AP的對稱點為E,連接DE交AP于點F,當∠BAP=20°時,則∠AFD= °;當∠BAP=α°(0<α<45°)時,則∠AFD= °;猜想線段DF, EF, AF之間的數(shù)量關(guān)系:DF-EF= AF(填系數(shù));

(2)數(shù)學思考:

如圖②,若將“正方形ABCD中”改成“菱形ABCD中,∠BAD=120°”,其他條件不變,則∠AFD= °;線段DF, EF, AF之間的數(shù)量關(guān)系是否發(fā)生改變,若發(fā)生改變,請寫出數(shù)量關(guān)系并說明理由;

(3)類比探究:

如圖③,若將“正方形ABCD中”改成“菱形ABCD中,∠BAD=α°”,其他條件不變,則∠AFD= °;請直接寫出線段DF,EF,AF之間的數(shù)量關(guān)系: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù)﹣2、13、5的極差是( 。

A.3B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A從原點出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動,3s后,兩點相距18個單位長度.已知點B的速度是點A的速度的5(速度單位:單位長度/s).

(1)求出點A、點B運動的速度,并在數(shù)軸上標出A,B兩點從原點出發(fā)運動3s時的位置;

(2)若A,B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動,幾秒時,原點恰好處在點A、點B的正中間?

(3)當A,B兩點從(2)中的位置繼續(xù)以原來的速度沿數(shù)軸向左運動的同時,另一點C從原點位置也向點A運動,當遇到點A后,立即返回向點B運動,遇到點B后又立即返回向點A運動,如此往返,直到點B追上點A時,點C立即停止運動.若點C一直以8個單位長度/s的速度勻速運動,則點C從開始運動到停止運動,行駛的路程是多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線y=﹣xx﹣2)(0≤x≤2)記為C1,它與x軸交于兩點OA1;C1A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進行下去,直至得到C6,若點P(11,m)在第6段拋物線C6m=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一個由邊長為1的小正方形組成的10×10的正方形網(wǎng)格,

1)在網(wǎng)格中畫出將ABC向右平移4個單位后的A1B1C1

2ABC繞點O旋轉(zhuǎn)180°后,點A與點A2重合,請在網(wǎng)格中畫出點O,并畫出ABC繞點O旋轉(zhuǎn)180°后的A2B2C2;

3)描述A1B1C1A2B2C2的位置關(guān)系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一組數(shù)據(jù)75 80,85,90,80則它的眾數(shù)和中位數(shù)分別為(

A.75,80B.8085C.80,90D.8080

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A、B在半徑為1的⊙O上,直線AC與⊙O相切,OC⊥OB,連接AB交OC于點D.

(Ⅰ)如圖①,若∠OCA=60°,求OD的長;

(Ⅱ)如圖②,OC與⊙O交于點E,若BE∥OA,求OD的長.

查看答案和解析>>

同步練習冊答案