【題目】如圖,點A和點B都是反比例函數(shù)在第一象限內(nèi)圖象上的點,點A的橫坐標(biāo)為1,點B的縱坐標(biāo)為1,連接AB,以線段AB為邊的矩形ABCD的頂點D,C恰好分別落在x軸,y軸的負(fù)半軸上,連接AC,BD交于點E,若的面積為6,則k的值為(

A.2B.3C.6D.12

【答案】B

【解析】

由點A的橫坐標(biāo)為1,點B的縱坐標(biāo)為1,得出點E的坐標(biāo),進(jìn)而推出點D的坐標(biāo),可以求出DA的長,,利用列方程,可求出結(jié)果.

∵點A和點B都是反比例函數(shù)y在第一象限內(nèi)圖象上的點,點A的橫坐標(biāo)為1,點B的縱坐標(biāo)為1

A1,k)、Bk,1

E為矩形ABCD對角線的交點,

E,

DC恰好分別落在x軸,y軸的負(fù)半軸上,

設(shè)Da0),E為點A、C的中點

a=1-k,

D1-k,0),

A1k)、D1-k,0),

AD2=1-k-12+k2=k2,

AD=

∵A(1,k)、B(k,1)

∴AB=

k2-k-6=0

解得:k=3k=-2(不符合題意,舍去)

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 經(jīng)過點,與軸相交于,兩點,

1)拋物線的函數(shù)表達(dá)式;

2)點在拋物線的對稱軸上,且位于軸的上方,將沿沿直線翻折得到,若點恰好落在拋物線的對稱軸上,求點和點的坐標(biāo);

3)設(shè)是拋物線上位于對稱軸右側(cè)的一點,點在拋物線的對稱軸上,當(dāng)為等邊三角形時,求直線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】均為自然數(shù),則關(guān)于的方程的解共有( )個(表示不超過實數(shù)的最大整數(shù))

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y= x2+bx+cx軸負(fù)半軸交于A點,與x軸正半軸交于B點,與y軸正半軸交于C點,COBOAB=14

1)求拋物線的解析式;

2)如圖2, M、N在第一象限內(nèi)拋物線上,MN點下方,連CM、CN,∠OCN+OCM180°, 設(shè)M點橫坐標(biāo)為mN點橫坐標(biāo)為n,求mn的函數(shù)關(guān)系式(n是自變量)

3)如圖3, (2)條件下,連ANCOE,過MMFABF,連BM、EF,若∠AFE2FMB=2β, N點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知Rt△AEC中,∠E=90°,請按如下要求進(jìn)行操作和判斷:

(1)尺規(guī)作圖:作△AEC的外接圓⊙O,并標(biāo)出圓心O(不寫畫法);

(2)延長CE,在CE的延長線上取點B,使EB=EC,連結(jié)AB,設(shè)AB與⊙O的交點為D(標(biāo)出字母B、D),判斷:圖中相等嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課外學(xué)習(xí)小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進(jìn)行了探究請補(bǔ)充完整以下探索過程:

1)列表:

x

-5

-4

-3

-2

-1

0

1

2

3

4

y

m

0

-3

-4

-3

0

-3

-4

n

0

直接寫出________,________;

2)根據(jù)上表中的數(shù)據(jù),在平面直角坐標(biāo)系內(nèi)補(bǔ)全該函數(shù)的圖象,并結(jié)合圖象寫出該函數(shù)的兩條性質(zhì):

性質(zhì)1______________________________________________________

性質(zhì)2_______________________________________________________

3)若方程有四個不同的實數(shù)根,請根據(jù)函數(shù)圖象,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點A逆時針旋轉(zhuǎn)60°得到△ADE,連接CD.,則的大小是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,點A、點B在⊙O上,∠AOB90°,OA6,點COA上,且OC2AC,點DOB的中點,點M是劣弧AB上的動點,則CM+2DM的最小值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃購進(jìn)A、B兩種新型節(jié)能臺燈,已知B型節(jié)能臺燈每盞進(jìn)價比A型的多40元,且用3000元購進(jìn)的A型節(jié)能臺燈與用5000元購進(jìn)的B型節(jié)能臺燈的數(shù)量相同.

1)求每盞A型節(jié)能臺燈的進(jìn)價是多少元?

2)商場將購進(jìn)A、B兩型節(jié)能臺燈100盞進(jìn)行銷售,A型節(jié)能臺燈每盞的售價為90元,B型節(jié)能臺燈每盞的售價為140元,且B型節(jié)能臺燈的進(jìn)貨數(shù)量不超過A型節(jié)能臺燈數(shù)量的2倍.應(yīng)怎樣進(jìn)貨才能使商場在銷售完這批臺燈時利最多?此時利潤是多少元?

查看答案和解析>>

同步練習(xí)冊答案