(2012•普陀區(qū)二模)如圖,邊長為1的菱形ABCD的兩個(gè)頂點(diǎn)B、C恰好落在扇形AEF的弧EF上時(shí),弧BC的長度等于
π
3
π
3
(結(jié)果保留π).
分析:B,C兩點(diǎn)恰好落在扇形AEF的
EF
上,即B、C在同一個(gè)圓上,連接AC,易證△ABC是等邊三角形,即可求得
BC
的圓心角的度數(shù),然后利用弧長公式即可求解.
解答:解:連接AC,

∵菱形ABCD中,AB=BC,
又∵AC=AB,
∴AB=BC=AC,即△ABC是等邊三角形.
∴∠BAC=60°,
BC
的長是:
60π×1
180
=
π
3
,
故答案是:
π
3
點(diǎn)評(píng):本題考查了弧長公式,理解B,C兩點(diǎn)恰好落在扇形AEF的
EF
上,即B、C在同一個(gè)圓上,得到△ABC是等邊三角形是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)二模)下列圖形中是中心對(duì)稱圖形,但不是軸對(duì)稱圖形的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)二模)先化簡,再求值:(
a2-2a+1
a2-1
+
1
a
1
a+1
,其中a=
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)二模)下列運(yùn)算,計(jì)算結(jié)果錯(cuò)誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)二模)方程
x2-1
=2
的根是
x=±
5
x=±
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)二模)已知,∠ACB=90°,CD是∠ACB的平分線,點(diǎn)P在CD上,CP=
2
.將三角板的直角頂點(diǎn)放置在點(diǎn)P處,繞著點(diǎn)P旋轉(zhuǎn),三角板的一條直角邊與射線CB交于點(diǎn)E,另一條直角邊與直線CA、直線CB分別交于點(diǎn)F、點(diǎn)G.
(1)如圖,當(dāng)點(diǎn)F在射線CA上時(shí),
①求證:PF=PE.
②設(shè)CF=x,EG=y,求y與x的函數(shù)解析式并寫出函數(shù)的定義域.
(2)連接EF,當(dāng)△CEF與△EGP相似時(shí),求EG的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案