如圖,AB∥GH∥CD,點(diǎn)H在BC上,AC與BD交于點(diǎn)G,AB=2,CD=3,則GH的長(zhǎng)為 .
解析試題分析:∵AB∥GH,∴△CGH∽△CAB!,即①,
∵GH∥CD,∴△BGH∽△BDC。∴,即②,
①+②,得,
∵CH+BH=BC,∴,解得GH=。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,路燈距離地面8米,身高1.6米的小明站在距離燈的底部(點(diǎn)O)20米的A處,則小明的影子AM長(zhǎng)為 米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
已知矩形ABCD中,AB=1,在BC上取一點(diǎn)E,沿AE將△ABE向上折疊,使B點(diǎn)落在AD上的F點(diǎn).若四邊形EFDC與矩形ABCD相似,則AD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
巡警小張?jiān)诜缸铿F(xiàn)場(chǎng)發(fā)現(xiàn)一只腳印,他把隨身攜帶的一百元鈔票放在腳印旁進(jìn)行拍照,照片送到刑事科,他們測(cè)得照片中的腳印和鈔票的長(zhǎng)度分別為5cm和3.1cm,一張百元鈔票的實(shí)際長(zhǎng)度大約為15.5cm,請(qǐng)問(wèn)腳印的實(shí)際長(zhǎng)度為_(kāi)______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
問(wèn)題情境:如圖1,直角三角板ABC中,∠C=90°,AC=BC,將一個(gè)用足夠長(zhǎng)的的細(xì)鐵絲制作的直角的頂點(diǎn)D放在直角三角板ABC的斜邊AB上,再將該直角繞點(diǎn)D旋轉(zhuǎn),并使其兩邊分別與三角板的AC邊、BC邊交于P、Q兩點(diǎn)。
問(wèn)題探究:(1)在旋轉(zhuǎn)過(guò)程中,
①如圖2,當(dāng)AD=BD時(shí),線(xiàn)段DP、DQ有何數(shù)量關(guān)系?并說(shuō)明理由。
②如圖3,當(dāng)AD=2BD時(shí),線(xiàn)段DP、DQ有何數(shù)量關(guān)系?并說(shuō)明理由。
③根據(jù)你對(duì)①、②的探究結(jié)果,試寫(xiě)出當(dāng)AD=nBD時(shí),DP、DQ滿(mǎn)足的數(shù)量關(guān)系為_(kāi)______________(直接寫(xiě)出結(jié)論,不必證明)
(2)當(dāng)AD=BD時(shí),若AB=20,連接PQ,設(shè)△DPQ的面積為S,在旋轉(zhuǎn)過(guò)程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,請(qǐng)說(shuō)明理由。
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
(2013年四川眉山3分)如圖,△ABC中,E、F分別是AB、AC上的兩點(diǎn),且,若△AEF的面積為2,則四邊形EBCF的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com