如圖,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=8,CD=10

(1)求梯形ABCD的面積;

(2)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以2個(gè)單位/s的速度沿B→A→D→C方向向點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以2個(gè)單位/s的速度沿C→D→A方向向點(diǎn)A運(yùn)動(dòng);過(guò)點(diǎn)Q作QE⊥BC于點(diǎn)E.若P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.問(wèn):

①當(dāng)點(diǎn)P在B→A上運(yùn)動(dòng)時(shí),是否存在這樣的t,使得直線PQ將梯形ABCD的周長(zhǎng)平分?若存在,請(qǐng)求出t的值,并判斷此時(shí)PQ是否平分梯形ABCD的面積;若不存在,請(qǐng)說(shuō)明理由.

②在運(yùn)動(dòng)過(guò)程中,是否存在這樣的t,使得以P、D、Q為頂點(diǎn)的三角形恰好是以DQ為一腰的等腰三角形?若存在,請(qǐng)求出所有符合條件的t的值;若不存在,請(qǐng)說(shuō)明理由.


(1)40;(2)①不存在;②.

【解析】

∵AD∥BH,DH∥AB,∴四邊形ABHD是平行四邊形.∴DH=AB=8;BH=AD=2.

∵CD=10,∴HC=,∴BC=BH+CH=8,

∴SABCD=(AD+BC)AB=×(2+8)×8=40.

=,

所以PQ不平分梯形ABCD的面積;

②第一種情況:當(dāng)0≤t≤4時(shí).過(guò)Q點(diǎn)作QH⊥AB,垂足為H.

解得:,(不合題意舍去),

∴第二種情況:4≤t<5時(shí).DP=DQ=10﹣2t.

∴當(dāng)4≤t<5時(shí),以DQ為腰的等腰△DPQ恒成立.

第三種情況:5<t≤6時(shí).DP=DQ=2t﹣10.

∴當(dāng)5<t≤6時(shí),以DQ為腰的等腰△DPQ恒成立.

綜上所述,或4≤t<5或5<t≤6時(shí),以DQ為腰的等腰△DPQ成立.

考點(diǎn):1.直角梯形;2.等腰直角三角形;3.動(dòng)點(diǎn)型.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


把邊長(zhǎng)為1的正方形紙片OABC放在直線m上,OA邊在直線m上,然后將正方形紙片繞著頂點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°,此時(shí),點(diǎn)O運(yùn)動(dòng)到了點(diǎn)O1處(即點(diǎn)B處),點(diǎn)C運(yùn)動(dòng)到了點(diǎn)C1處,點(diǎn)B運(yùn)動(dòng)到了點(diǎn)B1處,又將正方形紙片AO1C1B1繞B1點(diǎn),按順時(shí)針?lè)较蛐D(zhuǎn)90°…,按上述方法經(jīng)過(guò)4次旋轉(zhuǎn)后,頂點(diǎn)O經(jīng)過(guò)的總路程為  ,經(jīng)過(guò)61次旋轉(zhuǎn)后,頂點(diǎn)O經(jīng)過(guò)的總路程為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在中,.將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)n度后得到,此時(shí)點(diǎn)邊上,斜邊邊于點(diǎn),則n的大小和圖中陰影部分的面積分別為【    】

 A.       B.          C.       D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


將兩塊全等的三角板如圖①擺放,其中∠ACB=∠DCE=90°,∠A=∠D=45°,將圖①中的△DCE順時(shí)針旋轉(zhuǎn)得圖②,點(diǎn)P是AB與CE的交點(diǎn),點(diǎn)Q是DE與BC的交點(diǎn),在DC上取一點(diǎn)F,連接BE、FP,設(shè)BC=1,當(dāng)BF⊥AB時(shí),求△PBF面積的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


 如圖,在平面直角坐標(biāo)系xOy中,拋物線交y軸于點(diǎn)C,對(duì)稱軸與x軸交于點(diǎn)D,頂點(diǎn)為M,設(shè)點(diǎn)P(x,y)是第一象限內(nèi)該拋物線上的一個(gè)動(dòng)點(diǎn),直線PE繞點(diǎn)P旋轉(zhuǎn),與y軸交于點(diǎn)E,是否存在以O(shè)、P、E為頂點(diǎn)的三角形與△OPD全等?若存在,請(qǐng)求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,拋物線與x軸交于點(diǎn)A,將線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)1200至OB的位置.

(1)點(diǎn)B在拋物線上;

(2)在此拋物線的對(duì)稱軸上,是否存在點(diǎn)P,使得以點(diǎn)P、O、B為頂點(diǎn)的三角形是等腰三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,已知在平面直角坐標(biāo)系中,四邊形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,),∠AOC=60°,動(dòng)點(diǎn)P從點(diǎn)O以每秒2個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)Q也同時(shí)從點(diǎn)B沿B→C→O的線路以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q也隨之停止,設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t(秒).

(1)求點(diǎn)C的坐標(biāo)及梯形ABCO的面積;

(2)當(dāng)點(diǎn)Q在CO邊上運(yùn)動(dòng)時(shí),求△OPQ的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;

(3)以O(shè),P,Q為頂點(diǎn)的三角形能構(gòu)成直角三角形嗎?若能,請(qǐng)求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在菱形ABCD中,,E是AB上一點(diǎn),BE=2,AE=4BE,P是AC上一動(dòng)點(diǎn),則PB+PE的最小值是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


初三年級(jí)某班有54名學(xué)生,所在教室有6行9列座位,用表示第行第列的座位,新學(xué)期準(zhǔn)備調(diào)整座位,設(shè)某個(gè)學(xué)生原來(lái)的座位為,如果調(diào)整后的座位為,則稱該生作了平移,并稱為該生的位置數(shù)。若當(dāng)時(shí),取得最小值,則該生位置數(shù)的最大值為         。

查看答案和解析>>

同步練習(xí)冊(cè)答案