【題目】50個(gè)數(shù)據(jù)分成3組,其中第一組和第三組的頻率之和為0.7,則第二小組的頻數(shù)是( )

A. 0.3 B. 30 C. 15 D. 35

【答案】C

【解析】根據(jù)頻率的性質(zhì),各組的頻率之和為1,得第二小組的頻率等于1-0.7=0.3,則根據(jù)頻率=頻數(shù)÷總數(shù),可得第二小組的頻數(shù)是50×0.3=15.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果10b=n,那么稱bn的勞格數(shù),記為b=d n),由定義可知:10b=nb=d n)所表示的是bn兩個(gè)量之間的同一關(guān)系.

1)根據(jù)勞格數(shù)的定義,填空:d10= d10﹣2= ;

勞格數(shù)有如下運(yùn)算性質(zhì):

mn為正數(shù),則dmn=dm+dn),d=dm﹣dn).

根據(jù)運(yùn)算性質(zhì),填空:= a為正數(shù)).

2)下表中與數(shù)x對(duì)應(yīng)的勞格數(shù)d x)有且只有兩個(gè)是錯(cuò)誤的,請(qǐng)找出錯(cuò)誤的勞格數(shù),說明理由并改正.

x

1.5

3

5

6

8

9

12

27

dx

3a﹣b+c

2a﹣b

a+c

1+a﹣b﹣c

3﹣3a﹣3c

4a﹣2b

3﹣b﹣2c

6a﹣3b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將兩塊全等的直角三角形紙片ABC和DEF疊放在一起,其中ACB=E=90°,BC=DE=6,AC=FE=8,頂點(diǎn)D與邊AB的中點(diǎn)重合.

(1)若DE經(jīng)過點(diǎn)C,DF交AC于點(diǎn)G,求重疊部分(DCG)的面積;

(2)合作交流:希望小組受問題(1)的啟發(fā),將DEF繞點(diǎn)D旋轉(zhuǎn),使DEAB交AC于點(diǎn)H,DF交AC于點(diǎn)G,如圖2,求重疊部分(DGH)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個(gè)數(shù)的和是10,其中一個(gè)數(shù)用字母x表示,那么表示這兩個(gè)數(shù)的積的代數(shù)式是( )

A. 10x B. x (10+x) C. x (10-x) D. x (x-10)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是國外城市與北京的時(shí)差 (帶正號(hào)的數(shù)表示同一時(shí)刻比北京時(shí)間早的時(shí)數(shù))

城市

紐約

巴黎

東京

多倫多

時(shí)差(時(shí))

﹣13

﹣7

+1

﹣12

如果現(xiàn)在東京時(shí)間是16:00,那么紐約時(shí)間是__.(以上均為24小時(shí)制)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校有25名同學(xué)參加某比賽,預(yù)賽成績各不相同,取前13名參加決賽,其中一名同學(xué)已經(jīng)知道自己的成績,能否進(jìn)入決賽,只需要再知道這25名同學(xué)成績的(

A.最高分 B.中位數(shù) C.方差 D.平均數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,從點(diǎn)P1﹣1,0),P2﹣1,﹣1),P31,﹣1),P41,1),P5﹣2,1),P6﹣2,﹣2),依次擴(kuò)展下去,則P2017的坐標(biāo)為(  )

A. 504,504 B. ﹣504,504 C. ﹣504,﹣504 D. ﹣505,504

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系xoy中,已知A(6,0),B(8,6),將線段OA平移至CB,點(diǎn)D在x軸正半軸上(不與點(diǎn)A重合),連接OC,AB,CD,BD.

(1)寫出點(diǎn)C的坐標(biāo);

(2)當(dāng)△ODC的面積是△ABD的面積的3倍時(shí),求點(diǎn)D的坐標(biāo);

(3)設(shè)∠OCD=α,∠DBA=β,∠BDC=θ,判斷α、β、θ之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)平面上任意一點(diǎn)(a,b),定義f,g兩種變換:f(a,b)=(a,﹣b).如f(1,2)=(1,﹣2);g(a,b)=(b,a).如g(1,2)=(2,1).據(jù)此得g(f(5,﹣9))=( 。

A. (5,﹣9) B. (﹣9,﹣5) C. (5,9) D. (9,5)

查看答案和解析>>

同步練習(xí)冊(cè)答案