【題目】閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過某點(diǎn)且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫該點(diǎn)的“特征線”.例如,點(diǎn)M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.
問題與探究:如圖,在平面直角坐標(biāo)系中有正方形OABC,點(diǎn)B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過B、C兩點(diǎn),頂點(diǎn)D在正方形內(nèi)部.
(1)直接寫出點(diǎn)D(m,n)所有的特征線;
(2)若點(diǎn)D有一條特征線是y=x+1,求此拋物線的解析式;
(3)點(diǎn)P是AB邊上除點(diǎn)A外的任意一點(diǎn),連接OP,將△OAP沿著OP折疊,點(diǎn)A落在點(diǎn)A′的位置,當(dāng)點(diǎn)A′在平行于坐標(biāo)軸的D點(diǎn)的特征線上時(shí),滿足(2)中條件的拋物線向下平移多少距離,其頂點(diǎn)落在OP上?
【答案】(1)x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2);(3)拋物線向下平移或距離,其頂點(diǎn)落在OP上.
【解析】
試題分析:(1)根據(jù)特征線直接求出點(diǎn)D的特征線;
(2)由點(diǎn)D的一條特征線和正方形的性質(zhì)求出點(diǎn)D的坐標(biāo),從而求出拋物線解析式;
(2)分平行于x軸和y軸兩種情況,由折疊的性質(zhì)計(jì)算即可.
試題解析:(1)∵點(diǎn)D(m,n),∴點(diǎn)D(m,n)的特征線是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;
(2)點(diǎn)D有一條特征線是y=x+1,∴n﹣m=1,∴n=m+1.∵拋物線解析式為,∴,∵四邊形OABC是正方形,且D點(diǎn)為正方形的對稱軸,D(m,n),∴B(2m,2m),∴,將n=m+1帶入得到m=2,n=3;
∴D(2,3),∴拋物線解析式為.
(3)如圖,當(dāng)點(diǎn)A′在平行于y軸的D點(diǎn)的特征線時(shí):
根據(jù)題意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴拋物線需要向下平移的距離==.
如圖,當(dāng)點(diǎn)A′在平行于x軸的D點(diǎn)的特征線時(shí):
∵頂點(diǎn)落在OP上,∴A′與D重合,∴A′(2,3),設(shè)P(4,c)(c>0),由折疊有,PD=PA,∴,∴c=,∴P(4,),∴直線OP解析式為y=,∴N(2,),∴拋物線需要向下平移的距離=3﹣=,即:拋物線向下平移或距離,其頂點(diǎn)落在OP上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無法判定△ABC≌△ADC的是( )
A.CB=CD
B.∠BAC=∠DAC
C.∠BCA=∠DCA
D.∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且相交于O點(diǎn). ①試說明△OBC是等腰三角形;
②連接OA,試判斷直線OA與線段BC的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是( 。
①AD是∠BAC的平分線;
②∠ADC=60°;
③點(diǎn)D在AB的中垂線上;
④BD=2CD.
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
我們知道,四邊形具有不穩(wěn)定性,容易變形,如圖1,一個(gè)矩形發(fā)生變形后成為一個(gè)平行四邊形,設(shè)這個(gè)平行四邊形相鄰兩個(gè)內(nèi)角中較小的一個(gè)內(nèi)角為α,我們把的值叫做這個(gè)平行四邊形的變形度.
(1)若矩形發(fā)生變形后的平行四邊形有一個(gè)內(nèi)角是120度,則這個(gè)平行四邊形的變形度是 .
猜想證明:
(2)設(shè)矩形的面積為S1,其變形后的平行四邊形面積為S2,試猜想S1,S2,之間的數(shù)量關(guān)系,并說明理由;
拓展探究:
(3)如圖2,在矩形ABCD中,E是AD邊上的一點(diǎn),且=AEAD,這個(gè)矩形發(fā)生變形后為平行四邊形A1B1C1D1,E1為E的對應(yīng)點(diǎn),連接B1E1,B1D1,若矩形ABCD的面積為(m>0),平行四邊形A1B1C1D1的面積為(m>0),試求∠A1E1B1+∠A1D1B1的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°.
(1)用直尺和圓規(guī)作出BC的垂直平分線(保留作圖痕跡,不要求寫作法);
(2)BC的垂直平分線與AC相交于D,連結(jié)BD,若∠C=30°,則∠ABD= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com