(2011•潼南縣)若△ABC∽△DEF,它們的面積比為4:1,則△ABC與△DEF的相似比為( 。
A.2:1B.1:2
C.4:1D.1:4
:解:∵△ABC∽△DEF,它們的面積比為4:1,
∴△ABC與△DEF的相似比為2:1.
故選A.
:由△ABC∽△DEF與它們的面積比為4:1,根據(jù)相似三角形面積的比等于相似比的平方,即可求得△ABC與△DEF的相似比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,將矩形沿折疊,使點(diǎn)恰好落在處,以為邊作正方形,延長(zhǎng),使,再以、為邊作矩形

(1). (2分)試比較的大小,并說(shuō)明理由.
(2). (1分)令,請(qǐng)問(wèn)是否為定值?若是,請(qǐng)求出的值;若不是,請(qǐng)說(shuō)明理由.為定值.
(3). (3分)在(2)的條件下,若上一點(diǎn)且,拋物線經(jīng)過(guò)、兩點(diǎn),請(qǐng)求出此拋物線的解析式.
(4). (4分)在(3)的條件下,若拋物線與線段交于點(diǎn),試問(wèn)在直線上是否存在點(diǎn),使得以、為頂點(diǎn)的三角形與相似?若存在,請(qǐng)求直線軸的交點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(滿分l4分)如圖,點(diǎn)P是雙曲線y=(k1<0,x<0)上一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸,y軸的垂線,分別交x軸,y軸于A,B兩點(diǎn),交雙曲線y= (0<k2<︱k1︱)于E,F(xiàn)兩點(diǎn).
(1)圖①中,四邊形PEOF 的面積S1=__________(用含k1,k2的式子表示);
(2)圖②中,設(shè)點(diǎn)P坐標(biāo)為(-4,3).
①判斷EF與AB的位置關(guān)系,并證明你的結(jié)論;
②記S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若沒(méi)有,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

要做兩個(gè)形狀為三角形的框架,其中一個(gè)三角形框架的三邊長(zhǎng)分別為4,5,6,另一個(gè)三角形框架的一邊長(zhǎng)為2,欲使這兩個(gè)三角形相似,三角形框架的兩邊長(zhǎng)可以是_________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)如圖1,在四邊形ABCD的AB邊上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B
重合),分別連接ED、EC,可以把四邊形ABCD分成3個(gè)三角形.如果其中有2個(gè)三角形
相似,我們就把點(diǎn)E叫做四邊形ABCD的AB邊上的相似點(diǎn);如果這3個(gè)三角形都相似,
我們就把點(diǎn)E叫做四邊形ABCD的AB邊上的強(qiáng)相似點(diǎn).

(1)若圖1中,∠A=∠B=∠DEC=50°,說(shuō)明點(diǎn)E是四邊形ABCD的AB邊上的相似點(diǎn);
(2)①如圖2,畫(huà)出矩形ABCD的AB邊上的一個(gè)強(qiáng)相似點(diǎn).(要求:畫(huà)圖工具不限,不寫(xiě)畫(huà)法,保留畫(huà)圖痕跡或有必要的說(shuō)明.)
②對(duì)于任意的一個(gè)矩形,是否一定存在強(qiáng)相似點(diǎn)?如果一定存在,請(qǐng)說(shuō)明理由;如果不一定存在,請(qǐng)舉出反例.
(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,點(diǎn)E是梯形ABCD的AB邊上的一個(gè)強(qiáng)相似點(diǎn),判斷AE與BE的數(shù)量關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

Rt△ABC中,AD為斜邊BC上的高,若, 則    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知,邊長(zhǎng)為5的正方形ABCO在如圖所示的直角坐標(biāo)系中,點(diǎn)
M(t,0)為x軸上一動(dòng)點(diǎn),過(guò)A作直線MC的垂線交y軸于點(diǎn)N.
(1)當(dāng)t=2時(shí),求直線MC的解析式;
(2)設(shè)△AMN的面積為S,當(dāng)S=3時(shí),求t的值;
(3)取點(diǎn)P(1,y),如果存在以M、N、C、P為頂點(diǎn)的四邊形是等腰梯形,當(dāng)t<0時(shí),甲同學(xué)說(shuō):y與t應(yīng)同時(shí)滿足方程t2-yt-5=0和y2-2t2-10y+26=0;乙同學(xué)說(shuō):y與t應(yīng)同時(shí)滿足方程t2-yt-5=0和y2+8t-24=0,你認(rèn)為誰(shuí)的說(shuō)法正確,并說(shuō)明理由.再直接寫(xiě)出t>0時(shí)滿足題意的一個(gè)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2011•常州)在平面直角坐標(biāo)系XOY中,一次函數(shù)的圖象是直線l1,l1與x軸、y軸分別相交于A、B兩點(diǎn).直線l2過(guò)點(diǎn)C(a,0)且與直線l1垂直,其中a>0.點(diǎn)P、Q同時(shí)從A點(diǎn)出發(fā),其中點(diǎn)P沿射線AB運(yùn)動(dòng),速度為每秒4個(gè)單位;點(diǎn)Q沿射線AO運(yùn)動(dòng),速度為每秒5個(gè)單位.
(1)寫(xiě)出A點(diǎn)的坐標(biāo)和AB的長(zhǎng);
(2)當(dāng)點(diǎn)P、Q運(yùn)動(dòng)了多少秒時(shí),以點(diǎn)Q為圓心,PQ為半徑的⊙Q與直線l2、y軸都相切,求此時(shí)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某學(xué)習(xí)小組在討論“變化的魚(yú)”時(shí),知道大魚(yú)與小魚(yú)是位似圖形(如圖).則小魚(yú)上的點(diǎn)(a,b)對(duì)應(yīng)大魚(yú)上的點(diǎn)是____________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案