【題目】如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn))ABC的頂點(diǎn)A, C的坐標(biāo)分別為。
(1)請?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)畫出平面直角坐標(biāo)系;
(2)把三角形ABC先向右平移5個(gè)單位長度,再向下平移3個(gè)單位長度得到三角形A′B′C′,且點(diǎn)A,B,C的對應(yīng)點(diǎn)分別為A′,B′,C′,請你在圖中畫出三角形A′B′C′;
(3)求三角形ABC的面積。
【答案】(1)作圖見解析.(2)作圖見解析.(3)
【解析】試題分析:(1)以點(diǎn)A、C的坐標(biāo)為參照找出原點(diǎn),再建立平面直角坐標(biāo)系;
(2)先求出平移后點(diǎn)A′、B′、C′的坐標(biāo),再描點(diǎn)畫圖即可;
(3)先求出邊長為3的正方形的面積,再減去三個(gè)直角三角形的面積即可;
試題解析:
(1)如圖所示:
(2)根據(jù)題意可得點(diǎn)A(-4,4)、B(-2,1)、C(-1,3), 則向右平移5個(gè)單位長度,再向下平移3個(gè)單位長度得到A′(-1,1)、B′(3,-2)、C′(4,0),如圖所示:
(3) 三角形ABC的面積=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù):8,1,4,3,x的平均數(shù)為x,則這組數(shù)據(jù)的眾數(shù)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知, , 是81的算術(shù)平方根,求x-y+z的值.
(2)解不等式組,并寫出該不等式組的整數(shù)解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般地,n個(gè)相同的因數(shù)a相乘(即) a×a×a … a記 為an.如2×2×2=23=8,此時(shí),3叫做以2為底8的對數(shù),記為log28(即log28=3)請?zhí)骄?/span>log24、log216、log264之間的數(shù)量關(guān)系_______ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
我們知道|x|=,現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式|x+1|+|x-2|時(shí),可令x+1=0和x-2=0,分別求得x=-1,x=2(稱-1,2分別為|x+1|與|x-2|的零點(diǎn)值),在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=-1和x=2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:
(1)當(dāng)x<-1時(shí),原式=-(x+1)-(x-2)=-2x+1;
(2)當(dāng)-1≤x<2時(shí),原式=x+1-(x-2)=3;
(3)當(dāng)x≥2時(shí),原式=x+1+x-2=2x-1.綜上所述,原式=
學(xué)以致用:
(Ⅰ)分別求出|x+3|和|x-1|的零點(diǎn)值;
(Ⅱ)化簡代數(shù)式|x+3|+|x-1|;
拓展應(yīng)用:
(Ⅲ)求函數(shù)y=|x+3|+|x-1|(-3≤x≤3)的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(﹣1,2)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)是( )
A. (﹣1,2) B. (﹣2,1) C. (﹣1,﹣2) D. (1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如下圖, AB∥CD,點(diǎn)E,F分別為AB,CD上一點(diǎn).
(1) 在AB,CD之間有一點(diǎn)M(點(diǎn)M不在線段EF上),連接ME,MF,試探究∠AEM,∠EMF,∠MFC之間有怎樣的數(shù)量關(guān)系. 請補(bǔ)全圖形,并在圖形下面寫出相應(yīng)的數(shù)量關(guān)系,選其中一個(gè)進(jìn)行證明.
(2)如下圖,在AB,CD之間有兩點(diǎn)M,N,連接ME,MN,NF,請選擇一個(gè)圖形寫出∠AEM,∠EMN,∠MNF,∠NFC 存在的數(shù)量關(guān)系(不需證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com