【題目】如圖,⊙O的半徑為6cm,B為⊙O外一點(diǎn),OB交⊙O于點(diǎn)A,AB=OA,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以π cm/s的速度在⊙O上按逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周回到點(diǎn)A立即停止.當(dāng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為______時(shí),BP與⊙O相切.
【答案】2或10
【解析】
根據(jù)切線的判定與性質(zhì)進(jìn)行分析即可.若BP與⊙O相切,則∠OPB=90°,又因?yàn)?/span>OB=2OP,可得∠B=30°,則∠BOP=60°;根據(jù)弧長(zhǎng)公式求得弧AP長(zhǎng),除以速度,即可求得時(shí)間.
連接OP
∵當(dāng)OP⊥PB時(shí),BP與⊙O相切,
∵AB=OA,OA=OP,
∴OB=2OP,∠OPB=90°;
∴∠B=30°;
∴∠O=60°;
∵OA=6cm,
弧AP==2π,
∵圓的周長(zhǎng)為:12π,
∴點(diǎn)P運(yùn)動(dòng)的距離為2π或12π-2π=10π;
∴當(dāng)t=2秒或10秒時(shí),有BP與⊙O相切.
故答案為:2或10
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,經(jīng)過(guò)點(diǎn)A(-4,4)的拋物線y=ax2+bx與x軸相交于點(diǎn)B(-3,0).
(1)求拋物線的解析式;
(2)如圖1,過(guò)點(diǎn)A作AH⊥x軸,垂足為H,平行于y軸的直線交線段AO于點(diǎn)Q,交拋物線于點(diǎn)P,當(dāng)四邊形AHPQ為平行四邊形時(shí),求∠AOP的度數(shù);
(3)如圖2,,試探究:在拋物線上是否存在點(diǎn)C,使∠CAO=∠BAO?若存在,請(qǐng)求出直線AC解析式;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(定義學(xué)習(xí))
定義:如果四邊形有一組對(duì)角為直角,那么我們稱(chēng)這樣的四邊形為“對(duì)直四邊形”
(判斷嘗試)
在①梯形;②矩形:③菱形中,是“對(duì)直四邊形”的是哪一個(gè). (填序號(hào))
(操作探究)
在菱形ABCD中,于點(diǎn)E,請(qǐng)?jiān)谶?/span>AD和CD上各找一點(diǎn)F,使得以點(diǎn)A、E、C、F組成的四邊形為“對(duì)直四邊形”,畫(huà)出示意圖,并直接寫(xiě)出EF的長(zhǎng),
(實(shí)踐應(yīng)用)
某加工廠有一批四邊形板材,形狀如圖所示,若AB=3米,AD=1米,
.現(xiàn)根據(jù)客戶要求,需將每張四邊形板材進(jìn)一步分割成兩個(gè)等腰三角形板材和一個(gè)“對(duì)直四邊形"板材,且這兩個(gè)等腰三角形的腰長(zhǎng)相等,要求材料充分利用無(wú)剩余.求分割后得到的等腰三角形的腰長(zhǎng),
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對(duì)應(yīng)值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個(gè)結(jié)論:
(1)二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
(2)拋物線與y軸交點(diǎn)為(0,-3);
(3)二次函數(shù)y=ax2+bx+c 的圖像對(duì)稱(chēng)軸是x=1;
(4)本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四座城市A,B,C,D分別位于一個(gè)邊長(zhǎng)100km的大正方形的四個(gè)頂點(diǎn),由于各城市之間的商業(yè)往來(lái)日益頻繁,于是政府決定修建公路網(wǎng)連接它們,根據(jù)實(shí)際,公路總長(zhǎng)設(shè)計(jì)得越短越好,公開(kāi)招標(biāo)的信息發(fā)布后,一個(gè)又一個(gè)方案被提交上來(lái),經(jīng)過(guò)初審后,擬從下面四個(gè)方案中選定一個(gè)再進(jìn)一步認(rèn)證,其中符合要求的方案是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)扇文化有著深厚的文化底蘊(yùn),是民族文化的一個(gè)組成部分,它與竹文化、佛教文化有著密切關(guān)系.歷來(lái)中國(guó)被譽(yù)為制扇王國(guó).扇子主要材料是:竹、木、紙、象牙、玳瑁、翡翠、飛禽翎毛、其它棕櫚葉、檳榔葉、麥桿、蒲草等也能編制成各種千姿百態(tài)的日用工藝扇,造型優(yōu)美,構(gòu)造精制,經(jīng)能工巧匠精心鏤、雕、燙、鉆或名人揮毫題詩(shī)作畫(huà),使扇子藝術(shù)身價(jià)倍增.折扇,古稱(chēng)“聚頭扇“,或稱(chēng)為撒扇,或折疊扇,以其收攏時(shí)能夠二頭合并歸一而得名.如圖,折扇的骨柄OA的長(zhǎng)為5a,扇面的寬CA的長(zhǎng)為3a,折扇張開(kāi)的角度為n°,求出扇面的面積(用代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D.
求證:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是線段CD的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如3+2=(1+)2,善于思考的小明進(jìn)行了以下探索:設(shè)a+b=(m+n)2(其中a,b,m,n均為正整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.這樣小明就找到了一種把a+b化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題.
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m、n的式子分別表示a、b,則a= ,b= ;
(2)求7+4的算術(shù)平方根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com