【題目】如圖,拋物線經(jīng)過(guò)A(1,0)、B(4,0)、C(0,﹣4)三點(diǎn),點(diǎn)D是直線BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),連接DC、DB,則△BCD的面積的最大值是_____.
【答案】8
【解析】
要求△BCD的最大值,只要表示出△BCD的面積即可,根據(jù)題目中的信息可以求出拋物線的解析式和直線的解析式,從而可以表示出三角形BCD的面積,即可求出△BCD的最大值.
設(shè)拋物線的解析式是y=ax2+bx+c,
∵拋物線經(jīng)過(guò)A(1,0),B(4,0),C(0,﹣4)三點(diǎn),
∴,
解得,,
∴y=﹣x2+5x﹣4,
設(shè)過(guò)點(diǎn)B(4,0),C(0,﹣4)的直線的解析式為y=kx+m
,
解得,,
即直線BC的直線解析式為:y=x﹣4,
設(shè)點(diǎn)D的坐標(biāo)是(x,﹣x2+5x﹣4)
∴S△BCD==﹣2(x﹣2)2+8,
∴當(dāng)x=2時(shí),△BCD的面積取得最大值,最大值是8.
故答案為:8
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,的三條角平分線交于點(diǎn),過(guò)作的垂線分別交、于點(diǎn)、.
(1)寫(xiě)出圖中的相似三角形(全等三角形除外),并選一對(duì)證明.
(2)若,,比長(zhǎng),求的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】太原雙塔寺又名永祚寺,是國(guó)家級(jí)文物保護(hù)單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為“文筆雙塔”,是太原的標(biāo)志性建筑之一,某校社會(huì)實(shí)踐小組為了測(cè)量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標(biāo)桿CD,這時(shí)地面上的點(diǎn)E,標(biāo)桿的頂端點(diǎn)D,舍利塔的塔尖點(diǎn)B正好在同一直線上,測(cè)得EC=4米,將標(biāo)桿CD向后平移到點(diǎn)C處,這時(shí)地面上的點(diǎn)F,標(biāo)桿的頂端點(diǎn)H,舍利塔的塔尖點(diǎn)B正好在同一直線上(點(diǎn)F,點(diǎn)G,點(diǎn)E,點(diǎn)C與塔底處的點(diǎn)A在同一直線上),這時(shí)測(cè)得FG=6米,GC=53米.
請(qǐng)你根據(jù)以上數(shù)據(jù),計(jì)算舍利塔的高度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某養(yǎng)雞場(chǎng)有2500只雞準(zhǔn)備對(duì)外出售.從中隨機(jī)抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:),繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:
(Ⅰ)圖①中的值為 ;
(Ⅱ)求統(tǒng)計(jì)的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ) 根據(jù)樣本數(shù)據(jù),估計(jì)這2500只雞中,質(zhì)量為的約有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=(a﹣1)x2+3x﹣6的圖象與x軸的交點(diǎn)為A和B,若點(diǎn)B一定在坐標(biāo)原點(diǎn)和(1,0)之間,且B點(diǎn)不與原點(diǎn)和(1,0)重合,那么a的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣2x2+4x與x軸交于點(diǎn)O、A,把拋物線在x軸及其上方的部分記為C1,將C1以y鈾為對(duì)稱軸作軸對(duì)稱得到C2,C2與x軸交于點(diǎn)B,若直線y=x+m與C1,C2共有3個(gè)不同的交點(diǎn),則m的取值范圍是( )
A. 0<m< B. <m<
C. 0<m< D. m<或m<
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=2.動(dòng)點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)A出發(fā),沿A→C→B的方向向終點(diǎn)B運(yùn)動(dòng)(點(diǎn)P不與△ABC的頂點(diǎn)重合).點(diǎn)P關(guān)于點(diǎn)C的對(duì)稱點(diǎn)為點(diǎn)D,過(guò)點(diǎn)P作PQ⊥AB于點(diǎn)Q,以PD、PQ為邊作□PDEQ.設(shè)□PDEQ與△ABC.重疊部分的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s)
(1)當(dāng)點(diǎn)P在AC上運(yùn)動(dòng)時(shí),用含t的代數(shù)式表示PD的長(zhǎng);
(2)當(dāng)點(diǎn)E落在△ABC的直角邊上時(shí),求t的值;
(3)當(dāng)□PDEQ與△ABC重疊部分的圖形是四邊形時(shí),求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線的頂點(diǎn)坐標(biāo)為(2,0),且經(jīng)過(guò)點(diǎn)(4,1),如圖,直線y=x與拋物線交于A、B兩點(diǎn),直線l為y=﹣1.
(1)求拋物線的解析式;
(2)在l上是否存在一點(diǎn)P,使PA+PB取得最小值?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)知F(x0,y0)為平面內(nèi)一定點(diǎn),M(m,n)為拋物線上一動(dòng)點(diǎn),且點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等,求定點(diǎn)F的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com