【題目】已知,如圖,Rt△ABC中,∠BAC=90°,以AB為直徑的⊙O交BC于D,OD交AC的延長線于E,OA=1,AE=3.則下列結(jié)論正確的有 . ①∠B=∠CAD;②點(diǎn)C是AE的中點(diǎn);③ = ;④tan B=

【答案】①③④
【解析】解:∵AB為直徑, ∴∠ADB=90°,
∴∠B+∠DAB=90°,
∵∠CAD+∠DAB=90°,
∴∠B=∠CAD,故①正確;
∵∠CAD=∠B=∠ODB=∠CDE,∠E=∠E,
∴△ECD∽△EDA,
= ,
∵OA=1,AE=3,
∴OE= ,ED= ﹣1,
= ,
∴CE= AE,
即點(diǎn)C不是AE的中點(diǎn),故②不正確;
由△ECD∽△EDA,得 =
在Rt△ABC中,AD⊥BC,
∴△ACD∽△BAD,
= ,
= ,故③正確;
tanB= = = = ,故④正確.
所以答案是:①③④.
【考點(diǎn)精析】利用圓周角定理和相似三角形的判定與性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第一次模擬試后,數(shù)學(xué)科陳老師把一班的數(shù)學(xué)成績制成如圖的統(tǒng)計(jì)圖,并給了幾個(gè)信息:①前兩組的頻率和是0.14;②第一組的頻率是0.02;③自左到右第二、三、四組的頻數(shù)比為3:9:8,然后布置學(xué)生(也請(qǐng)你一起)結(jié)合統(tǒng)計(jì)圖完成下列問題:
(1)全班學(xué)生是多少人?
(2)成績不少于90分為優(yōu)秀,那么全班成績的優(yōu)秀率是多少?
(3)若不少于100分可以得到A+等級(jí),則小明得到A+的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的布袋里裝有4個(gè)標(biāo)有1,2,3,4的小球,它們的形狀、大小、質(zhì)地完全相同,小李從布袋里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,小張?jiān)谑O碌?個(gè)小球中隨機(jī)取出一個(gè)小球,記下數(shù)字為y,這樣確定了點(diǎn)Q的坐標(biāo)(x,y).
(1)畫樹狀圖或列表,寫出點(diǎn)Q所有可能的坐標(biāo);
(2)求點(diǎn)Q(x,y)在函數(shù)y=﹣x+5圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAC=60°,AC與BC交于點(diǎn)O,E為CD延長線上的一點(diǎn),且CD=DE,連接BE分別交AC、AD于點(diǎn)F、G,連接OG,則下列結(jié)論中一定成立的是 . (把所有正確結(jié)論的序號(hào)都填在橫線上) ①OG= AB;
②與△EGD全等的三角形共有5個(gè);
③S四邊形CDGF>SABF;
④由點(diǎn)A、B、D、E構(gòu)成的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】立定跳遠(yuǎn)是小剛同學(xué)體育中考的選考項(xiàng)目之一.某次體育課上,體育老師記錄了小剛的一組立定跳遠(yuǎn)訓(xùn)練成績?nèi)缦卤恚?

成績(m)

2.35

2.4

2.45

2.5

2.55

次數(shù)

1

1

2

5

1

則下列關(guān)于這組數(shù)據(jù)的說法中正確的是(
A.眾數(shù)是2.45
B.平均數(shù)是2.45
C.中位數(shù)是2.5
D.方差是0.48

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩個(gè)二次函數(shù)圖象的頂點(diǎn)相同,開口大小相同,但開口方向相反,則稱這兩個(gè)二次函數(shù)為“對(duì)稱二次函數(shù)”.
(1)請(qǐng)寫出二次函數(shù)y=2(x﹣2)2+1的“對(duì)稱二次函數(shù)”;
(2)已知關(guān)于x的二次函數(shù)y1=x2﹣3x+1和y2=ax2+bx+c,若y1﹣y2與y1互為“對(duì)稱二次函數(shù)”,求函數(shù)y2的表達(dá)式,并求出當(dāng)﹣3≤x≤3時(shí),y2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘漁船位于港口A的北偏東60°方向,距離港口20海里B處,它沿北偏西37°方向航行至C處突然出現(xiàn)故障,在C處等待救援,B,C之間的距離為10海里,救援船從港口A出發(fā)20分鐘到達(dá)C處,求救援的艇的航行速度.(sin37°≈0.6,cos37°≈0.8, ≈1.732,結(jié)果取整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄰邊不相等的平行四邊形紙片,剪去一個(gè)菱形,余下的一個(gè)四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個(gè)菱形,又余下一個(gè)四邊形,稱為第二次操作;…依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準(zhǔn)菱形,如圖1,ABCD中,若AB=1,BC=2,則ABCD為1階準(zhǔn)菱形.

(1)猜想與計(jì)算:
鄰邊長分別為3和5的平行四邊形是階準(zhǔn)菱形;已知ABCD的鄰邊長分別為a,b(a>b),滿足a=8b+r,b=5r,請(qǐng)寫出ABCD是階準(zhǔn)菱形.
(2)操作與推理:
小明為了剪去一個(gè)菱形,進(jìn)行了如下操作:如圖2,把ABCD沿BE折疊(點(diǎn)E在AD上),使點(diǎn)A落在BC邊上的點(diǎn)F處,得到四邊形ABFE.請(qǐng)證明四邊形ABFE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠BOD=88°,則∠BCD的度數(shù)是(
A.88°
B.92°
C.106°
D.136°

查看答案和解析>>

同步練習(xí)冊(cè)答案