【題目】將長(zhǎng)為,寬為的長(zhǎng)方形白紙,按圖示方法粘合起來(lái),粘合部分寬為

1)根據(jù)圖示,將下表補(bǔ)充完整;

白紙張數(shù)

1

2

3

4

5

紙條長(zhǎng)度/

40

110

145

2)設(shè)張白紙粘合后的總長(zhǎng)度為,求之間的關(guān)系式;

3)將若干張白紙按上述方式粘合起來(lái),你認(rèn)為總長(zhǎng)度可能為嗎?為什么?

【答案】175,180;(2;(3)不能,見(jiàn)解析

【解析】

(1)根據(jù)題意找出白紙張數(shù)跟紙條長(zhǎng)度之間的關(guān)系,然后求解填空即可;

(2)x張白紙粘合,需粘合(x-1)次,重疊5(x-1)cm,所以總長(zhǎng)可以表示出來(lái);

(3)解當(dāng)y=2019時(shí)得到的方程,若x為整數(shù)則能,反之不能.

解:(175,180

2)由題意,得,即.

3)不能.理由:因?yàn)?/span>.解得.

因?yàn)?/span>為白紙張數(shù),不能為小數(shù),所以總長(zhǎng)度不可能為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的半徑為,弦,,,則的距離為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ABC=45°,CDAB于點(diǎn)D,BE平分∠ABC,且BEAC于點(diǎn)E,與CD相交于點(diǎn)F,H是邊BC的中點(diǎn),連接 DH BE相交于點(diǎn) G,若GE=3,則BF=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為60°,在斜坡上的D處測(cè)得樓頂B的仰角為45°,其中點(diǎn)A,C,E在同一直線上.

(1)求坡底C點(diǎn)到大樓距離AC的值;

(2)求斜坡CD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,網(wǎng)格線是由邊長(zhǎng)為1的小正方形格子組成的,小正方形的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形叫做格點(diǎn)多邊形.小明與數(shù)學(xué)小組的同學(xué)研究發(fā)現(xiàn),內(nèi)部含有3個(gè)格點(diǎn)的四邊形的面積與該四邊形邊上的格點(diǎn)數(shù)有某種關(guān)系,請(qǐng)你觀察圖中的4個(gè)格點(diǎn)四邊形.設(shè)內(nèi)部含有3個(gè)格點(diǎn)的四邊形的面積為,其各邊上格點(diǎn)的個(gè)數(shù)之和為,則之間的關(guān)系式為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣(x﹣h)2(h為常數(shù)),當(dāng)自變量x的值滿足2≤x≤5時(shí),與其對(duì)應(yīng)的函數(shù)值y的最大值為﹣1,則h的值為(

A. 36 B. 16 C. 13 D. 46

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)A與原點(diǎn)重合,點(diǎn)By軸的正半軸上,點(diǎn)Dx軸的負(fù)半軸上,將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至正方形AB'C′D′的位置,B'C′CD相交于點(diǎn)M,則點(diǎn)M的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】21.(2013年四川攀枝花8分)某文具店準(zhǔn)備購(gòu)進(jìn)甲,乙兩種鉛筆,若購(gòu)進(jìn)甲種鋼筆100支,乙種鉛筆50支,需要1000元,若購(gòu)進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.

1)求購(gòu)進(jìn)甲,乙兩種鋼筆每支各需多少元;

2)若該文具店準(zhǔn)備拿出1000元全部用來(lái)購(gòu)進(jìn)這兩種鋼筆,考慮顧客需求,要求購(gòu)進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過(guò)乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案;

3)若該文具店銷售每支甲種鋼筆可獲利潤(rùn)2元,銷售每支乙種鋼筆可獲利潤(rùn)3元,在第(2)問(wèn)的各種進(jìn)貨方案中,哪一種方案獲利最大;最大利潤(rùn)是多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》里有一道著名算題:“今有上禾三秉,益實(shí)六斗,當(dāng)下禾十秉.下禾五秉,益實(shí)一斗,當(dāng)上禾二乘、問(wèn)上、下禾實(shí)一乘各幾何?”大意是:3捆上等谷子結(jié)出的糧食,再加.上六斗,相當(dāng)于10捆下等谷子結(jié)出的糧食.5捆下等谷子結(jié)出的糧食,再加上一斗,相當(dāng)于2捆上等谷子結(jié)出的糧食.問(wèn):上等谷子和下等谷子每捆能結(jié)出多少斗糧食?請(qǐng)解答上述問(wèn)題.

查看答案和解析>>

同步練習(xí)冊(cè)答案