海上有一小島,為了測量小島兩端A、B的距離,測量人員設(shè)計了一種測量方法,如圖所示,已知B點是CD的中點,E是BA延長線上的一點,測得AE=10海里,DE=30海里,且DE⊥EC,cos∠D=.
(1)求小島兩端A、B的距離;
(2)過點C作CF⊥AB交AB的延長線于點F,求sin∠BCF的值.
(1) 16.7(海里).(2)

試題分析:(1)在Rt△CED中,利用三角函數(shù)求出CE,CD的長,根據(jù)中點的定義求得BE的長,AB=BE-AE即可求解;
(2)設(shè)BF=x海里.在Rt△CFB中,利用勾股定理求得CF2=CB2-BF2=252-x2=625-x2.在Rt△CFE中,列出關(guān)于x的方程,求得x的值,從而求得sin∠BCF的值.
(1)在Rt△CED中,∠CED=90°,DE=30海里,
∴cos∠D=,
∴CE=40(海里),CD=50(海里).
∵B點是CD的中點,
∴BE=CD=25(海里)
∴AB=BE-AE=25-8.3=16.7(海里).
答:小島兩端A、B的距離為16.7海里.
(2)設(shè)BF=x海里.
在Rt△CFB中,∠CFB=90°,
∴CF2=CB2-BF2=252-x2=625-x2
在Rt△CFE中,∠CFE=90°,
∴CF2+EF2=CE2,即625-x2+(25+x)2=1600.
解得x=7.
∴sin∠BCF=
考點: 解直角三角形的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:計算題

計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖14-1,在銳角△ABC中,AB = 5,AC =,∠ACB = 45°.
計算:求BC的長;
操作:將圖14-1中的△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△A1BC1.如圖14-2,當(dāng)點C1在線段CA的延長線上時.
(1)證明:A1C1⊥CC1;
(2)求四邊形A1BCC1的面積;

探究:
將圖14-1中的△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△A1BC1.連結(jié)AA1,CC1,如圖14-3.若△ABA1的面積為5,求點C到BC1的距離;
拓展:
將圖14-1中的△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△A1BC1.點E為線段AB中點,點P是線段AC上的動點,在△ABC繞點B按逆時針方向旋轉(zhuǎn)過程中,點P的對應(yīng)點是點P1,如圖14-4.
(1)若點P是線段AC的中點,求線段EP1長度的最大值與最小值;
(2)若點P是線段AC上的任一點,直接寫出線段EP1長度的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,CA=CB,在△AED中, DA=DE,點D、E分別在CA、AB上.
(1)如圖①,若∠ACB=∠ADE=90°,則CD與BE的數(shù)量關(guān)系是    ;
(2)若∠ACB=∠ADE=120°,將△AED繞點A旋轉(zhuǎn)至如圖②所示的位置,則CD與BE的數(shù)量關(guān)系是    ;,
(3)若∠ACB=∠ADE=2α(0°< α < 90°),將△AED繞點A旋轉(zhuǎn)至如圖③所示的位置,探究線段CD與BE的數(shù)量關(guān)系,并加以證明(用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

綜合實踐課上,小明所在小組要測量護城河的寬度.如圖所示是護城河的一段,兩岸AB∥CD,河岸AB上有一排大樹,相鄰兩棵大樹之間的距離均為10米.小明先用測角儀在河岸CD的M處測得∠α=36°,然后沿河岸走50米到達N點,測得∠β=72°.請你根據(jù)這些數(shù)據(jù)幫小明他們算出河寬FR(結(jié)果保留兩位有效數(shù)字).
(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,河流的兩岸PQ、MN互相平行,河岸PQ上有一排小樹,已知相鄰兩樹之間的距離CD=50米,某人在河岸MN的A處測得∠DAN=35°,然后沿河岸走了120米到達B處,測得∠CBN=70°.求河流的寬度CE.(結(jié)果保留兩個有效數(shù)字)(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70, Sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在高度是2l米的小山A處測得建筑物CD頂部C處的仰角為30°,底部D處的俯角為45°,則這個建筑物的高度CD=            米(結(jié)果可保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若△ABC的三邊a、b、c滿足a²+b²+c²十338=10a+24b+26c,則△ABC的面積是(  )
A.338B.24C.26D.30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將矩形ABCD沿CE折疊,點B恰好落在邊AD的F處,如果,那么tan∠DCF的值是    .

查看答案和解析>>

同步練習(xí)冊答案