【題目】一個(gè)四位數(shù),記千位數(shù)字與個(gè)位數(shù)字之和為,十位數(shù)字與百位數(shù)字之和為,如果,那么稱這個(gè)四位數(shù)為“對(duì)稱數(shù)”
最小的“對(duì)稱數(shù)”為 ;四位數(shù)與之和為最大的“對(duì)稱數(shù)”,則的值為 ;
一個(gè)四位的“對(duì)稱數(shù)”,它的百位數(shù)字是千位數(shù)字的倍,個(gè)位數(shù)字與十位數(shù)字之和為,且千位數(shù)字使得不等式組恰有個(gè)整數(shù)解,求出所有滿足條件的“對(duì)稱數(shù)”的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,以為直徑作半圓,點(diǎn)在半圓上,連結(jié),,且.連結(jié),是邊上的高,過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),交于點(diǎn).
(1)求證:.
(2)當(dāng)為的中點(diǎn)時(shí),求的值.
(3)如圖2,取的中點(diǎn),連結(jié).
①若,在點(diǎn)運(yùn)動(dòng)過(guò)程中,當(dāng)四邊形的其中一邊長(zhǎng)是的2倍時(shí),求所有滿足條件的長(zhǎng).
②連結(jié),當(dāng)的面積是的面積的3倍時(shí),求的值(請(qǐng)直接寫出答案).
圖1圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某駐村扶貧小組實(shí)施產(chǎn)業(yè)扶貧,幫助貧困農(nóng)戶進(jìn)行西瓜種植和銷售.已知西瓜的成本為6元/千克,規(guī)定銷售單價(jià)不低于成本,又不高于成本的兩倍.經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),某天西瓜的銷售量y(千克)與銷售單價(jià)x(元/千克)的函數(shù)關(guān)系如下圖所示:
(1)求y與x的函數(shù)解析式(也稱關(guān)系式);
(2)求這一天銷售西瓜獲得的利潤(rùn)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+3(a≠0)的對(duì)稱軸為直線x=﹣1,拋物線交x軸于A、C兩點(diǎn),與直線y=x﹣1交于A、B兩點(diǎn),直線AB與拋物線的對(duì)稱軸交于點(diǎn)E.
(1)求拋物線的解板式.
(2)點(diǎn)P在直線AB上方的拋物線上運(yùn)動(dòng),若△ABP的面積最大,求此時(shí)點(diǎn)P的坐標(biāo).
(3)在平面直角坐標(biāo)系中,以點(diǎn)B、E、C、D為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出符合條件點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的頂點(diǎn)都在坐標(biāo)軸上,若AB∥CD,AOB與COD面積分別為8和18,若雙曲線y=恰好經(jīng)過(guò)BC的中點(diǎn)E,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的半徑為6,是的內(nèi)接三角形,連接、,若與互補(bǔ),則線段的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,二次函數(shù)(,為常數(shù))的圖像頂點(diǎn)的縱坐標(biāo)為.
(1)直接寫出、滿足的關(guān)系式是______;
(2)若點(diǎn),()是二次函數(shù)(,為常數(shù))的圖像上的兩點(diǎn).
①當(dāng),時(shí),求的長(zhǎng)度;
②當(dāng)時(shí),求的長(zhǎng)度;
③若存在實(shí)數(shù),使得,且成立,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 我們定義:如圖1、圖2、圖3,在△ABC中,把AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到AB′,把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC′,連接B′C′,當(dāng)α+β=180°時(shí),我們稱△AB'C′是△ABC的“旋補(bǔ)三角形”,△AB′C′邊B'C′上的中線AD叫做△ABC的“旋補(bǔ)中線”,點(diǎn)A叫做“旋補(bǔ)中心”.圖1、圖2、圖3中的△AB′C′均是△ABC的“旋補(bǔ)三角形”.
(1)①如圖2,當(dāng)△ABC為等邊三角形時(shí),“旋補(bǔ)中線”AD與BC的數(shù)量關(guān)系為:AD= BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時(shí),則“旋補(bǔ)中線”AD長(zhǎng)為 .
(2)在圖1中,當(dāng)△ABC為任意三角形時(shí),猜想“旋補(bǔ)中線”AD與BC的數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3(a≠0)與x軸交于點(diǎn)A(﹣2,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)P從A點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q從B點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),當(dāng)△PBQ存在時(shí),求運(yùn)動(dòng)多少秒使△PBQ的面積最大,最大面積是多少?
(3)當(dāng)△PBQ的面積最大時(shí),在BC下方的拋物線上存在點(diǎn)K,使S△CBK:S△PBQ=5:2,求K點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com