【題目】一個(gè)四位數(shù),記千位數(shù)字與個(gè)位數(shù)字之和為,十位數(shù)字與百位數(shù)字之和為,如果,那么稱這個(gè)四位數(shù)為對(duì)稱數(shù)

最小的對(duì)稱數(shù) ;四位數(shù)之和為最大的對(duì)稱數(shù),則的值為

一個(gè)四位的對(duì)稱數(shù),它的百位數(shù)字是千位數(shù)字倍,個(gè)位數(shù)字與十位數(shù)字之和為,且千位數(shù)字使得不等式組恰有個(gè)整數(shù)解,求出所有滿足條件的對(duì)稱數(shù)的值.

【答案】(1)1010;7979;(2)

【解析】

1)根據(jù)最小的“對(duì)稱數(shù)”1001,最大的“對(duì)稱數(shù)”9999即可解答;

2)先解不等式組確定a的值,然后根據(jù)a和題意確定B,即可確定M.

:9999-2020=7979

,由有四個(gè)整數(shù)解,

,又為千位數(shù)字,所以.

設(shè)個(gè)位數(shù)字為,由題意可得,十位數(shù)字為,故,

.

故滿足題設(shè)條件的

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,以為直徑作半圓,點(diǎn)在半圓上,連結(jié),,且.連結(jié),邊上的高,過(guò)點(diǎn)的延長(zhǎng)線于點(diǎn),交于點(diǎn).

1)求證:.

2)當(dāng)的中點(diǎn)時(shí),求的值.

3)如圖2,取的中點(diǎn),連結(jié).

①若,在點(diǎn)運(yùn)動(dòng)過(guò)程中,當(dāng)四邊形的其中一邊長(zhǎng)是2倍時(shí),求所有滿足條件的長(zhǎng).

②連結(jié),當(dāng)的面積是的面積的3倍時(shí),求的值(請(qǐng)直接寫出答案).

12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某駐村扶貧小組實(shí)施產(chǎn)業(yè)扶貧,幫助貧困農(nóng)戶進(jìn)行西瓜種植和銷售.已知西瓜的成本為6/千克,規(guī)定銷售單價(jià)不低于成本,又不高于成本的兩倍.經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),某天西瓜的銷售量y(千克)與銷售單價(jià)x(/千克)的函數(shù)關(guān)系如下圖所示:

(1)yx的函數(shù)解析式(也稱關(guān)系式);

(2)求這一天銷售西瓜獲得的利潤(rùn)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+3(a≠0)的對(duì)稱軸為直線x=﹣1,拋物線交x軸于A、C兩點(diǎn),與直線yx1交于AB兩點(diǎn),直線AB與拋物線的對(duì)稱軸交于點(diǎn)E

(1)求拋物線的解板式.

(2)點(diǎn)P在直線AB上方的拋物線上運(yùn)動(dòng),若△ABP的面積最大,求此時(shí)點(diǎn)P的坐標(biāo).

(3)在平面直角坐標(biāo)系中,以點(diǎn)B、EC、D為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出符合條件點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的頂點(diǎn)都在坐標(biāo)軸上,若AB∥CD,AOBCOD面積分別為818,若雙曲線y恰好經(jīng)過(guò)BC的中點(diǎn)E,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的半徑為6,的內(nèi)接三角形,連接,若互補(bǔ),則線段的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,二次函數(shù),為常數(shù))的圖像頂點(diǎn)的縱坐標(biāo)為

1)直接寫出滿足的關(guān)系式是______;

2)若點(diǎn))是二次函數(shù),為常數(shù))的圖像上的兩點(diǎn).

①當(dāng)時(shí),求的長(zhǎng)度;

②當(dāng)時(shí),求的長(zhǎng)度;

③若存在實(shí)數(shù),使得,且成立,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 我們定義:如圖1、圖2、圖3,在ABC中,把AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)αα180°)得到AB,把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC,連接BC,當(dāng)α+β180°時(shí),我們稱AB'CABC旋補(bǔ)三角形ABCB'C上的中線AD叫做ABC旋補(bǔ)中線,點(diǎn)A叫做旋補(bǔ)中心.圖1、圖2、圖3中的ABC均是ABC旋補(bǔ)三角形

1)①如圖2,當(dāng)ABC為等邊三角形時(shí),旋補(bǔ)中線ADBC的數(shù)量關(guān)系為:AD   BC;

②如圖3,當(dāng)∠BAC90°,BC8時(shí),則旋補(bǔ)中線AD長(zhǎng)為   

2)在圖1中,當(dāng)ABC為任意三角形時(shí),猜想旋補(bǔ)中線ADBC的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3a≠0)與x軸交于點(diǎn)A﹣2,0)、B4,0)兩點(diǎn),與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)點(diǎn)PA點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)QB點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),當(dāng)△PBQ存在時(shí),求運(yùn)動(dòng)多少秒使△PBQ的面積最大,最大面積是多少?

3)當(dāng)△PBQ的面積最大時(shí),在BC下方的拋物線上存在點(diǎn)K,使SCBKSPBQ=52,求K點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案