精英家教網 > 初中數學 > 題目詳情

【題目】如圖,若ABC內一點P,滿足∠PAB=∠PBC=∠PCAα,則稱點PABC的布洛卡點.通過研究一些特殊三角形中的布洛卡點,得到如下兩個結論:

①若∠BAC90°,則必有∠APC90°;②若ABAC,則必有∠APB=∠BPC

對于這兩個結論,下列說法正確的是( 。

A.①對,②錯B.①錯,②對C.①,②均錯D.①,②均對

【答案】D

【解析】

由直角三角形的性質可判斷①,通過證明ABP∽△BCP,可判斷②.

解:若∠BAC90°

∴∠BAP+PAC90°,且∠PAB=∠PBC=∠PCAα

∴∠PAC+ACP90°,

∴∠APC90°,故①對,

ABAC

∴∠ABC=∠ACB,且∠PAB=∠PBC=∠PCAα,

∴∠ABP=∠BCP,且∠BAP=∠PBC,

∴△ABP∽△BCP,

∴∠APB=∠BPC,故②對,

故選:D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為發(fā)展學生的核心素養(yǎng),培養(yǎng)學生的綜合能力,某學校計劃開設四門選修課:樂器、舞蹈、繪畫、書法,學校采取隨機抽樣的方法進行問卷調查每個被調查的學生必須選擇而且只能選擇其中一門對調查結果進行整理,繪制成如下兩幅不完整的統(tǒng)計圖請結合圖中所給信息解答下列問題:

本次調查的學生共有______人,在扇形統(tǒng)計圖中,m的值是______

分別求出參加調查的學生中選擇繪畫和書法的人數,并將條形統(tǒng)計圖補充完整.

該校共有學生2000人,估計該校約有多少人選修樂器課程?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在ABCD中,,,,射線AE平分動點P的速度沿AD向終點D運動,過點PAE于點Q,過點P,過點Q,交PM于點設點P的運動時間為,四邊形APMQ與四邊形ABCD重疊部分面積為

______用含t的代數式表示

當點M落在CD上時,求t的值.

St之間的函數關系式.

如圖2,連結AM,交PQ于點G,連結AC、BD交于點H,直接寫出t為何值時,GH與三角形ABD的一邊平行或共線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形的邊長為,點邊的中點,將沿翻折得到,延長邊于點,則,求出此時的值;

如圖,矩形中,,,點邊的中點,同樣將沿翻折得到,延長邊于點

證明:;

若點恰是邊的中點,求的值;

相似,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,為測量池塘寬度AB,可在池塘外的空地上取任意一點O,連接AO,BO,并分別延長至點C,D,使OCOA,ODOB,連接CD

1)求證:ABCD;

2)如圖2,受地形條件的影響,于是采取以下措施:延長AO至點C,使OCOA,過點CAB的平行線CE,延長BO至點F,連接EF,測得∠CEF140°,∠OFE110°,CE11m,EF10m,請直接寫出池塘寬度AB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】A玉米試驗田是邊長為am的正方形減去邊長為1m的蓄水池后余下部分,B玉米試驗田是邊長為(a1)m的正方形,兩塊試驗田的玉米都收獲了500kg

(1)哪種玉米田的單位面積產量高?

(2)高的單位面積產量是低的單位面積產量的多少倍?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】高爾夫球手基礎的高爾夫球的運動路線是一條拋物線,當球水平運動了時達到最高點.落球點比擊球點的海拔低,水平距離為

建立適當的坐標系,求高度關于水平距離的二次函數式;

與擊球點相比,運動到最高點時有多高?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,是矩形內一點,于點,于點,

請判斷四邊形是否是正方形?若是,寫出證明過程:若不是,說明理由;

延長到點,使,連接的延長線于點,求的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=﹣2x2+5x﹣2.

(1)寫出該函數的對稱軸,頂點坐標;

(2)求該函數與坐標軸的交點坐標.

查看答案和解析>>

同步練習冊答案