(2013•德州)如圖,AB∥CD,點(diǎn)E在BC上,且CD=CE,∠D=74°,則∠B的度數(shù)為(  )
分析:根據(jù)等腰三角形兩底角相等求出∠C的度數(shù),再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等解答即可.
解答:解:∵CD=CE,
∴∠D=∠DEC,
∵∠D=74°,
∴∠C=180°-74°×2=32°,
∵AB∥CD,
∴∠B=∠C=32°.
故選B.
點(diǎn)評(píng):本題考查了兩直線平行,內(nèi)錯(cuò)角相等的性質(zhì),等腰三角形兩底角相等的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•德州)如圖,扇形AOB的半徑為1,∠AOB=90°,以AB為直徑畫半圓,則圖中陰影部分的面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•德州)如圖,為抄近路踐踏草坪是一種不文明的現(xiàn)象,請(qǐng)你用數(shù)學(xué)知識(shí)解釋出這一現(xiàn)象的原因
兩點(diǎn)之間線段最短
兩點(diǎn)之間線段最短

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•德州)如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:
①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+
3

其中正確的序號(hào)是
①②④
①②④
(把你認(rèn)為正確的都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•德州)如圖,已知⊙O的半徑為1,DE是⊙O的直徑,過點(diǎn)D作⊙O的切線AD,C是AD的中點(diǎn),AE交⊙O于B點(diǎn),四邊形BCOE是平行四邊形.
(1)求AD的長;
(2)BC是⊙O的切線嗎?若是,給出證明;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•德州)如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、C.
(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,
①設(shè)拋物線對(duì)稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求出當(dāng)△CEF與△COD相似時(shí),點(diǎn)P的坐標(biāo);
②是否存在一點(diǎn)P,使△PCD得面積最大?若存在,求出△PCD的面積的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案