【題目】已知:如圖,在平面直角坐標系xOy中,拋物線的圖像與x軸交于點A(3,0),與y軸交于點B,頂點C在直線上,將拋物線沿射線 AC的方向平移,
當頂點C恰好落在y軸上的點D處時,點B落在點E處.
(1)求這個拋物線的解析式;
(2)求平移過程中線段BC所掃過的面積;
(3)已知點F在x軸上,點G在坐標平面內,且以點 C、E、F、G 為頂點的四邊形是矩形,求點F的坐標.
【答案】 (1)拋物線的解析式為;(2)12; (3)滿足條件的點有F1(,0),F(xiàn)2(,0),F(xiàn)3(,0),F(xiàn)4(,0).
【解析】分析:(1)根據(jù)對稱軸方程求得b=﹣4a,將點A的坐標代入函數(shù)解析式求得9a+3b+3=0,聯(lián)立方程組,求得系數(shù)的值即可;
(2)拋物線在平移的過程中,線段BC所掃過的面積為平行四邊形BCDE的面積,根據(jù)二次函數(shù)圖象上點的坐標特征和三角形的面積得到:∴.
(3)聯(lián)結CE.分類討論:(i)當CE為矩形的一邊時,過點C作CF1⊥CE,交x軸于點F1,設點F1(a,0).在Rt△OCF1中,利用勾股定理求得a的值;
(ii)當CE為矩形的對角線時,以點O為圓心,OC長為半徑畫弧分別交x軸于點F3、F4,利用圓的性質解答.
詳解:(1)∵頂點C在直線x=2上,∴,∴b=﹣4a.
將A(3,0)代入y=ax2+bx+3,得:9a+3b+3=0,解得:a=1,b=﹣4,
∴拋物線的解析式為y=x2﹣4x+3.
(2)過點C作CM⊥x軸,CN⊥y軸,垂足分別為M、N.
∵y=x2﹣4x+3═(x﹣2)2﹣1,∴C(2,﹣1).
∵CM=MA=1,∴∠MAC=45°,∴∠ODA=45°,∴OD=OA=3.
∵拋物線y=x2﹣4x+3與y軸交于點B,∴B(0,3),∴BD=6.
∵拋物線在平移的過程中,線段BC所掃過的面積為平行四邊形BCDE的面積,∴.
(3)聯(lián)結CE.
∵四邊形BCDE是平行四邊形,∴點O是對角線CE與BD的交點,即 .
(i)當CE為矩形的一邊時,過點C作CF1⊥CE,交x軸于點F1,設點F1(a,0).在Rt△OCF1中,,即 a2=(a﹣2)2+5,解得: ,∴點.
同理,得點;
(ii)當CE為矩形的對角線時,以點O為圓心,OC長為半徑畫弧分別交x軸于點F3、F4,可得: ,得點、.
綜上所述:滿足條件的點有),.
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩種型號的機器加工同一種零件,已知A型機器比B型機器每小時多加工20個零件,A型機器加工400個零件所用時間與B型機器加工300個零件所用時間相同.A型機器每小時加工零件的個數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩地相距180km,一列慢車以40km/h的速度從甲地勻速駛往乙地,慢車出發(fā)30分鐘后,一列快車以60km/h的速度從甲地勻速駛往乙地.兩車相繼到達終點乙地,再次過程中,兩車恰好相距10km的次數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖已知∠1與線段a,用直尺和圓規(guī)按下列步驟作圖(保留作圖痕跡,不寫做法。)
(1)作等∠A于∠1
(2)在∠A的兩邊分別作AM=AN=a
(3)連接MN
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉辦了一次趣味數(shù)學黨賽,滿分100分,學生得分均為整數(shù),這次競賽中,甲、乙兩組學生成績如下(單位:分)
甲組:30,60,60,60,60,60,70,90,90,100
乙組:50,60,60,60,70,70,70,70,80,90.
組別 | 平均分 | 中位數(shù) | 方差 |
甲組 | 68 | a | 376 |
乙組 | b | 70 |
(1)以生成績統(tǒng)計分析表中a=_________分,b=_________分.
(2)小亮同學說:“這次賽我得了70分,在我們小組中屬中游略偏上!”雙察上面表格判斷,小亮可能是甲、乙哪個組的學生?并說明理由。
(3)計算乙組成的方差,如果你是該校數(shù)學競賽的教練員,現(xiàn)在需要你選一組同學代表學校參加復賽,你會進擇哪一組?并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班七個興趣小組人數(shù)分別為4,4,5,5,x,6,7,已知這組數(shù)據(jù)的平均數(shù)是5,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( 。
A. 4,5 B. 4,4 C. 5,4 D. 5,5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校準備購進一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;
(2)學校準備購進這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ACB和△DCE都是等腰直角三角形,CA=CB,CD=CE,∠ACB=∠DCE=90°,△ACB的頂點A在△DCE的斜邊DE上,且AD=,AE=3,則AC=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把矩形放入平面直角坐標系中,使分別落在軸的正半軸上,其中,對角線所在直線解析式為,將矩形沿著折疊,使點落在邊上的處.
(1)求點的坐標;
(2)求的長度;
(3)點是軸上一動點,是否存在點使得的周長最小,若存在,請求出點的坐標,如不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com