【題目】如圖,在平面直角坐標系中,△OAB的頂點A,B的坐標分別為(4,0)、(4,n),若經(jīng)過點O、A的拋物線y=﹣x2+bx+c的頂點C落在邊OB上,則圖中陰影部分圖形的面積和為

【答案】8
【解析】解: ∵拋物線過O、A,
∴c=0,且對稱軸為x=2,即﹣ =2,解得b=4,
∴拋物線解析式為y=﹣x2+4x=﹣(x﹣2)2+4,
∴C(2,4),
∵拋物線圖象關于直線x=2對稱,
∴陰影部分的面積的和實際是△ABC的面積,
∴圖中陰影部分的面積的和= SOAB=SAOC= ×4×4=8,
所以答案是:8.
【考點精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以Rt△ABC的直角邊AB為直徑的半圓O,與斜邊AC交于D,E是BC邊上的中點,連結(jié)DE.
(1)DE與半圓O相切嗎?若相切,請給出證明;若不相切,請說明理由;
(2)若AD、AB的長是方程x2﹣10x+24=0的兩個根,求直角邊BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A為平面內(nèi)一點,給出如下定義:過點A作AB⊥y軸于點B,作正方形ABCD(點A,B,C,D順時針排列),即稱正方形ABCD為以A為圓心,OA為半徑的⊙A的“友好正方形”.
(1)如圖1,若點A的坐標為(1,1),則⊙A的半徑為
(2)如圖2,點A在雙曲線y= (x>0)上,它的橫坐標是2,正方形ABCD是⊙A的“友好正方形”,試判斷點C與⊙A的位置關系,并說明理由.
(3)如圖3,若點A是直線y=﹣x+2上一動點,正方形ABCD為⊙A的“友好正方形”,且正方形ABCD在⊙A的內(nèi)部時,請直接寫出點A的橫坐標m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象的對稱軸是直線x=1,其圖象的一部分如圖所示則①abc<0;②a﹣b+c<0;③3a+c<0;④當﹣1<x<3時,y>0.其中判斷正確的有( )個.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄂州市化工材料經(jīng)銷公司購進一種化工原料若干千克,價格為每千克30元.物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元.經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價x(元)的一次函數(shù),且當x=60時,y=80;x=50時,y=100.在銷售過程中,每天還要支付其他費用450元.
(1)求出y與x的函數(shù)關系式,并寫出自變量x的取值范圍.
(2)求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)關系式.
(3)當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,平移拋物線y=x2﹣2x+3,使平移后的拋物線經(jīng)過點A(﹣2,0),且與y軸交于點B,同時滿足以A,O,B為頂點的三角形是等腰直角三角形,求平移后的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為直線x=1,若其與x軸交于點為A(3,0),則由圖象可知,方程ax2+bx+c的另一個解是(
A.﹣1
B.﹣2
C.﹣1.5
D.﹣2.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九(1)班數(shù)學興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷量的相關信息如下表:

時間x(天)

1≤x<50

50≤x≤90

售價(元/件)

x+40

90

每天銷量(件)

200﹣2x

已知該商品的進價為每件30元,設銷售該商品的每天利潤為y元.
(1)求出y與x的函數(shù)關系式;
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+c與一次函數(shù)y=﹣x+4分別交y軸、x軸于A、B兩點.

(1)求這個拋物線的解析式;
(2)設P(x,y)是拋物線在第一象限內(nèi)的一個動點,過點P作直線PH⊥x軸于點H,交直線AB于點M.
①求當x取何值時,PM有最大值?最大值是多少?
②當PM取最大值時,以A、P、M、N為頂點構(gòu)造平行四邊形,求第四個頂點N的坐標.

查看答案和解析>>

同步練習冊答案