【題目】小宇家附近新修了一段公路,他想給市政寫信,建議在路的兩邊種上銀杏樹他先讓爸爸開車駛過這段公路,發(fā)現(xiàn)速度為60千米小時,走了約3分鐘,由此估算這段路長約______千米.

然后小宇查閱資料,得知銀杏為落葉大喬木,成年銀杏樹樹冠直徑可達(dá)8小宇計劃從路的起點開始,每隔a米種一棵樹,繪制示意圖如圖:

考慮到投入資金的限制,他設(shè)計了另一種方案,將原計劃的a擴(kuò)大一倍,則路的兩側(cè)共計減少200棵數(shù),請你求出a的值.

【答案】3,a的值為15

【解析】

利用路程=速度×時間可求出路的長度,設(shè)每a米種一棵樹,則另一方案每2a米種一棵樹,根據(jù)種樹的棵數(shù)=路的長度÷樹的間隔結(jié)合另一方案可減少200棵數(shù),即可得出關(guān)于a的分式方程,解之經(jīng)檢驗后即可得出結(jié)論.

千米

故答案為:3

設(shè)每a米種一棵樹,則另一方案每2a米種一棵樹,

依題意,得:,

解得:

經(jīng)檢驗,是所列方程的解,且符合題意.

答:a的值為15

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=4,點E是邊BC的中點,點G,H分別是邊CD,AB上的動點,連接GH交AE于F,且使GH⊥AE,連接AG,EH,則EH+AG的最小值是( )

A.8
B.4
C.2
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B,C三名大學(xué)生競選系學(xué)生會主席,他們的筆試成績和口試成績(單位:分)分別用了兩種方式進(jìn)行了統(tǒng)計,如表和圖一:

A

B

C

筆試

85

95

90

口試

80

85


(1)請將表一和圖一中的空缺部分補(bǔ)充完整.
(2)競選的最后一個程序是由本系的300名學(xué)生進(jìn)行投票,三位候選人的得票情況如圖二(沒有棄權(quán)票,每名學(xué)生只能推薦一個),請計算每人的得票數(shù).
(3)若每票計1分,系里將筆試、口試、得票三項測試得分按4:3:3的比例確定個人成績,請計算三位候選人的最后成績,并根據(jù)成績判斷誰能當(dāng)選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的二次函數(shù) 的圖象中,觀察得出了下面五條信息:
;② ;③ ;④ ;⑤ ,
你認(rèn)為其中正確信息的個數(shù)有個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 軸交于 、 兩點(點 在點 的左側(cè)),點 的坐標(biāo)為 ,與 軸交于點 ,作直線 .動點 軸上運動,過點 軸,交拋物線于點 ,交直線 于點 ,設(shè)點 的橫坐標(biāo)為
(Ⅰ)求拋物線的解析式和直線 的解析式;
(Ⅱ)當(dāng)點 在線段 上運動時,求線段 的最大值;
(Ⅲ)當(dāng)以 、 、 、 為頂點的四邊形是平行四邊形時,直接寫出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.“明天降雨的概率是80%”表示明天有80%的時間都在降雨
B.“拋一枚硬幣正面朝上的概率為 ”表示每拋2次就有一次正面朝上
C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為 ”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在 附近

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標(biāo)有數(shù)字1,2,3,4,另外有一個可以自由旋轉(zhuǎn)的圓盤,被分成面積相等的3個扇形區(qū)域,分別標(biāo)有數(shù)字1,2,3(如圖所示).

(1)從口袋中摸出一個小球,所摸球上的數(shù)字大于2的概率為;
(2)小龍和小東想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于5,那么小龍去;否則小東去.你認(rèn)為游戲公平嗎?請用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線ABy軸交于點,與x軸交于點B,,直線CDy軸交于點D,與x軸交于點,,直線AB與直線CD交于點Q,E為直線CD上一動點,過點Ex軸的垂線,交直線AB于點M,交x軸于點N,連接AE、BE

求直線AB、CD的解析式及點Q的坐標(biāo);

當(dāng)E點運動到Q點的右側(cè),且的面積為時,在y軸上有一動點P,直線AB上有一動點R,當(dāng)的周長最小時,求點P的坐標(biāo)及周長的最小值.

問的條件下,如圖2繞著點B逆時針旋轉(zhuǎn)得到,使點M與點G重合,點N與點H重合,再將沿著直線AB平移,記平移中的,在平移過程中,設(shè)直線x軸交于點F,是否存在這樣的點F,使得為等腰三角形?若存在,求出此時點F的坐標(biāo);若不存在,說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y1=2x﹣2與坐標(biāo)軸交于A、B兩點,與雙曲線y2= (x>0)交于點C,過點C作CD⊥x軸,且OA=AD,則以下結(jié)論: ①當(dāng)x>0時,y1隨x的增大而增大,y2隨x的增大而減;
②k=4;
③當(dāng)0<x<2時,y1<y2;
④如圖,當(dāng)x=4時,EF=4.
其中正確結(jié)論的個數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案