關(guān)于x的方程,kx2+(k+1)x+k=0有兩個(gè)不等實(shí)根.
①求k的取值范圍;
②是否存在實(shí)數(shù)k,使方程的兩實(shí)根的倒數(shù)和為0?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.
解:①△=(k+1)2﹣4k·k,
=k2+2k+1﹣k2
=2k+1>0,
∴k>﹣,
∵k≠0,
故k>﹣且k≠0.
②設(shè)方程的兩根分別是x1和x2,
則:x1+x2=﹣,x1x2=,
+==﹣=0,
∴k=﹣1,
∵k>﹣
∴k=﹣1(舍去).
所以不存在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程,kx2+(k+1)x+
14
k=0有兩個(gè)不等實(shí)根.
①求k的取值范圍;
②是否存在實(shí)數(shù)k,使方程的兩實(shí)根的倒數(shù)和為0?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

關(guān)于x的方程,kx2+(k+1)x+
1
4
k=0有兩個(gè)不等實(shí)根.
①求k的取值范圍;
②是否存在實(shí)數(shù)k,使方程的兩實(shí)根的倒數(shù)和為0?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省長沙市長沙縣黃興中學(xué)九年級(jí)(上)第一次月考數(shù)學(xué)試卷B(解析版) 題型:解答題

關(guān)于x的方程,kx2+(k+1)x+k=0有兩個(gè)不等實(shí)根.
①求k的取值范圍;
②是否存在實(shí)數(shù)k,使方程的兩實(shí)根的倒數(shù)和為0?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年福建省南平市邵武市九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

關(guān)于x的方程,kx2+(k+1)x+k=0有兩個(gè)不等實(shí)根.
①求k的取值范圍;
②是否存在實(shí)數(shù)k,使方程的兩實(shí)根的倒數(shù)和為0?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案